Combinatorics and Quantum Non Locality

Harry Buhrman
CWI
Univ. of Amsterdam
The Netherlands
Joint work with:
Serge Massar
Hein Röhrig
overview

• EPR pairs
• Bell \rightarrow non locality
• Quantum Computing
• Non locality \rightarrow
 Quantum Communication Complexity
• Quantum Communication Complexity \rightarrow Non locality
non locality
Non locality

• k (>1) parties
• each party \(i \) has
 - part of an entangled state \(|\varphi\rangle \)
 - receives input \(x_i \)
 - performs measurement \(M_{x_i} \)
 - outputs measurement value \(o_i \)
• Induces correlations:
 - \(P_Q(o_1...o_k \mid x_1...x_k) \)
• no communication!
Quantum Setup

$|0\rangle + |1\rangle$

EPR-pair

Alice

M_{x_1}

O_1

X_1

Bob

M_{x_2}

O_2

X_2

induces correlations:

$P_Q(o_1o_2 \mid x_1x_2)$
Non locality

• Question:
 - Can these correlations be reproduced classically?
Local hidden var. model

• Classical setup
• Each party has:
 - copy of random bits (shared randomness)
 - input x_i
 - Performs computation (protocol)
 - Outputs o_i
• Induces correlations:
 - $P_c(o_1...o_k \mid x_1...x_k)$
Classical Setup

$r_1 r_2 \ldots r_k$ shared randomness

Alice

x_1 computation

y_1 induces correlations:

$P_C(y_1 y_2 \mid x_1 x_2)$

Bob

x_2 computation
Non locality

• If for every protocol:
 - \(P_c(o_1...o_k \mid x_1...x_k) \neq P_Q(o_1...o_k \mid x_1...x_k) \)
 - Non locality

• Requires
 - State + measurements to obtain \(P_Q \)
 - Prove that for every classical lhv protocol:
 \(P_c(o_1...o_k \mid x_1...x_k) \neq P_Q(o_1...o_k \mid x_1...x_k) \)
Examples

• 2 parties:
 - EPR pair: \(\frac{1}{\sqrt{2}}[|00\rangle + |11\rangle] \)
 - Bell inequalities

• 3 parties
 - GHZ state: \(\frac{1}{\sqrt{2}}[|000\rangle + |111\rangle] \)
 - Mermin state: \(\frac{1}{2}[|001\rangle + |010\rangle + |100\rangle + |111\rangle] \)

• n parties
 \(\frac{1}{\sqrt{2}}[\underbrace{|0\cdots 0\rangle}_{n} + \underbrace{|1\cdots 1\rangle}_{n}] \)
Communication Complexity
Communication Complexity

Goal: Compute some function $F(x_1,x_2)$ minimizing communication bits.
Equality

Classical bits

\[F(x_1, x_1) = 1 \text{ iff } x_1 = x_2 \]
Equality

Classical bits

$F(x_1, x_1) = 1$ iff $x_1 = x_2$

$|x_2| = n$ bits necessary and sufficient:

$C(EQ) = n$
Quantum Com. Complexity

Goal: Compute some function $F(x_1, x_2) \rightarrow \{0, 1\}$ minimizing communication bits.
EPR-pairs can reduce Com. Cost

- **Mermin nonlocality (3 parties):** \[CB'97\]
 - classical cost 4 bits
 - quantum cost 3 bits

- **Improvements:**
 - \(k \) parties \(k \text{ vs } k \log(k) \) \[BvDHT'99\]
 - incorporating quantum algorithms: \[BCW'98\]
 - 2 parties \(\log(n) \text{ vs } n \) (Deutsch-Jozsa)
 - 2 parties \(n^{1/2} \text{ vs } n \) (Grover)
 - few rounds, randomness, quantum lower bounds
 ...[R'99,KNTZ'00,K'00,ANTVW'99,JVS'01,HdeW'02,R'02...\]
EPR-pairs Can Reduce Cost

exponential gap [BCW’98]

\[\text{EQ}'(x_1, x_2) = 1 \text{ iff } x_1 = x_2 \]

Promise \(\Delta(x_1, x_2) = n/2 \text{ or } 0 \)

- need \(\Omega(n) \) classical bits.
- can be done with \(\log(n) \) bits +EPR-pairs.
- Protocol: distributed Deutsch-Jozsa
non locality experiments
Quantum Setup

\[|0 \rangle + \]

EPR-pair

\[|1 \rangle \]

induces correlations:

\[P_Q(o_1o_2 \mid x_1x_2) \]
Quantum Setup

$|0\rangle \rightarrow 0\rangle +$

$|1\rangle \rightarrow 1\rangle$

induces correlations:

$P_Q(o_1 o_2 \mid x_1 x_2)$
Quantum Setup

\[|0 \rangle \rightarrow EPR\text{-}pair \rightarrow |1 \rangle \]

\(x_1M_{x_1}o_1 \) induces correlations:

\[P_Q(o_1o_2 \mid x_1x_2) \]
• sometimes detector(s) don’t click
 - Alice and/or Bob don’t have an output
 - can only test correlations when both Alice and Bob have an output
• Classical non clicking:
 - classical lhv protocol sometimes no output
 - only check whenever there is an output
• \(\eta = \text{detector efficiency} = \text{prob. of clicking} \)
 - small \(\eta \) allows for lhv protocols
example

shared randomness

\[\eta = 2^{-k} \]

correlation

\[P(o | xy) \]

- if \(y_1 \ldots y_k \neq r_{k+1} \ldots r_{2k} \) ➔ No Click
- if \(y_1 \ldots y_k = r_{k+1} \ldots r_{2k} \)
 assume \(x = r_1 \ldots r_k \)
 output \(P(o_1 | xy) \)

- if \(x_1 \ldots x_k \neq r_1 \ldots r_k \) ➔ No Click
- if \(x_1 \ldots x_k = r_1 \ldots r_k \)
 assume \(y = r_{k+1} \ldots r_{2k} \)
 output \(P(o_2 | xy) \)
detection loophole

- All experiments that show non locality have η such that a lhv model exist!
- Solution:
 - Design tests that allow small η
 - Test also useful to test devices that claim to behave non local (eg quantum crypto)
- No good tests known
\(\eta^* \)

definition

\(\eta^* \) is the maximum detector efficiency for which a lhv model exists.

Goal:

- design correlation problem/test
- prove upper bounds on \(\eta^* \)
from quantum communication complexity back to non locality
Monochromatic rectangles

- X_1, X_2 set of inputs for Alice and Bob
- Rectangle $R = A \times B$, $A \subseteq X_1$ & $B \subseteq X_2$
- R is a-monochromatic if
 - for all $(x_1, x_2) \in R : F(x_1, x_2) = a$

- $R_a = \max \{ R \mid R \text{ is } a\text{-monochr.}\}$
- $|R_a|$ yields lower bound on $C(F)$
Monochromatic rectangles

- \(X_1, X_2\) set of inputs for Alice and Bob
- Rectangle \(R = A \times B, A \subseteq X_1 \land B \subseteq X_2\)
- \(R\) is \(a\)-monochromatic if
 - for all \((x_1, x_2) \in R \cap D: F(x_1, x_2) = a\)
- \(D\) = set of promise inputs
- \(R_a = \max \{R \cap D \mid R\text{ is } a\text{-monochr.}\}\)
- \(|R_a|\) yields lower bound on \(C(F)\)
set of inputs that have \(a \) as output

\[
C(F) \geq \log \left(\frac{D_a}{R_a} \right)
\]
EPR-pairs Can Reduce Cost

exponential gap \([BCW'98]\)

\[\text{EQ}'(x_1, x_2) = 1 \text{ iff } x_1 = x_2 \]

Promise \(\Delta(x_1, x_2) = n/2 \text{ or } 0\)

- need \(\Omega(n)\) classical bits.
- can be done with \(\log(n)\) bits +EPR-pairs.
- Protocol: distributed Deutsch-Jozsa
set of inputs that have 1 as output

\[C(F) \geq \log \left(\frac{D_1}{R_1} \right) = .04n \]

\[R_1 \leq 2^{0.96n} \]

\[D_1 = 2^n \]

hard comb. theorem due to Frankl & Rödl
non-locality test

Promise $\Delta(x_1, x_2) = n/2 \ or \ 0$

- Alice outputs $\log(n)$ bits o_1
- Bob outputs $\log(n)$ bits o_2
- correlation:
 $$x_1 = x_2 \leftrightarrow o_1 = o_2$$

- D-J algorithm on EPR-pairs [BCT'99]

$$\eta_\star \leq \frac{\sqrt{n}}{20.02n}$$ [Massar’01]
DJ-test

\[|0 \rangle \rightarrow 0 \rangle + \log(n) \text{ EPR-pairs} \]
\[|1 \rangle \rightarrow 1 \rangle \]

promise $\Delta(x_1,x_2) = n/2$ or 0

Alice

X_1
$H + \text{ph-flip}$
O_1

X_2
$H + \text{ph-flip}$
O_2

$log(n) \text{ bits}$

$x_1 = x_2 \iff o_1 = o_2$
Monochromatic rectangles

- \(X_1, X_2\) set of inputs for Alice and Bob
- \(\text{Rectangle } R = A \times B, A \subseteq X_1 \& B \subseteq X_2\)
- \(R\) is \(a\)-monochromatic if
 - for all \((x_1, x_2) \in R \cap D: P(a|x_1 x_2) > 0\)
- \(D\) = set of promise inputs
- \(R_A = \max \{R \cap D | R\text{ is } a\text{-mon. } a \in A\}\)
- \(|R_A|\) yields upper bound on \(\eta^*\)
Bound on η_*

Number of possible outputs $= |A|$

$$\eta_* \leq \left(d \frac{R^A}{|D_a|}\right)^{\frac{1}{2}}$$

A is set of other outputs

\{b | \exists x \ P(a|x) > 0 \& P(b|x) > 0\}

Set of inputs x s.t.

$P(a|x) > 0$
proof

\[\eta^* \leq \left(d \frac{R_A}{|D_a|} \right)^{\frac{1}{2}} \]

- **lhv protocol** is distribution of deterministic prot. \(Q_i \): for all \(x \)
 - Alice & Bob yield admissible outcome, or
 - at least one doesn’t click [prob. \(\eta \)]

- **exist** \(Q_j \) Alice & Bob yield admissible outcome on \(\eta^2 \) fraction of \(a \)-inputs

- **det. protocol** Alice & Bob yield outcome on at most \(dR_A \) of the inputs

- \(dR_A / |D_a| \geq \eta^2 \)
Application of bound
DJ-test

|0\rangle \rightarrow \text{log}(n) \text{ EPR-pairs} \rightarrow |0\rangle +

|1\rangle \rightarrow \Delta(x_1, x_2) = n/2 \text{ or } 0

\[x_1 = x_2 \iff o_1 = o_2 \]

log(n) bits

promise

\[\eta^* \leq \frac{\sqrt{n}}{20.02n} \]
Bound on η_* for DJ-test

number of possible outputs

$$\eta_* \leq \left(d \frac{R_A}{|D_{aa}|} \right)^{\frac{1}{2}}$$

A = \{a_ia_i\}

d = n

$R_A \leq 2^{0.96n}$

$D_{aa} = 2^n$

set of inputs x s.t. $P(aa|x) > 0$
Bound on η_* for DJ-test

number of possible outputs

$$\eta_* \leq \left(d \frac{R_A}{|D_{aa}|} \right)^{\frac{1}{2}} = \frac{\sqrt{n}}{2^{0.02n}}$$

set of inputs x s.t. $P(aa|x) > 0$

$d = n$

$R_A \leq 2^{0.96n}$

$D_{aa} = 2^n$
n parties
n party test [BvDHT'99]

- input party i:
 \[x_i \in \{0, \ldots, n - 1\} \]

- promise:
 \[\sum_{i=1}^{n} x_i \mod \frac{n}{2} = 0 \]

- output a_i:
 \[\sum_{i=1}^{n} a_i \mod 2 = \frac{1}{n/2} \sum_{i=1}^{n} x_i \mod n \]

- detector:
 \[\eta_* \leq \frac{1}{n} \]
n-party bound

largest mon. rectangle

\[\eta_* \leq \left(d \frac{R}{|D|} \right)^{\frac{1}{n}} \]

inputs

\[d = 2^n \]
\[R \leq (n-2/n)^n \]
\[D = 2^{n \log(n)} \]

number of possible outputs
n-party bound

largest mon. rectangle

\[\eta_* \leq \left(d \frac{R}{|D|} \right)^{\frac{1}{n}} = \frac{1}{n} \]

inputs

number of possible outputs

d = 2^n
R \leq (n-2/n)^n
D = 2^{n\log(n)}
error's

• DJ-test can be simulated classically with small error.

• n-party test is even robust against error! Can not be simulated classically with:
 - error prob. < $\frac{1}{2} - \frac{1}{n}$ and
 - $\eta_* \leq \frac{1}{n}$ [Hoyer’lastweek]
open problems

• construct 2 party test:
 - $\eta \leq \frac{1}{2^n}$ and
 - prob. of error $< \frac{1}{n}$
 - quantum gives perfect correlation

• Maybe can use Raz’s problem?
• Other applications of non-locality tests?
Thanks to the organizers!