On the History of the
Frobenius- and
Tchebotarev-Density
1 Dirichlet Density. Dirichlet (1837)

Definition 1 \(M \) a set of prime numbers.

Density \(\delta(M) \) of \(M \):

\[
\delta(M) := \lim_{s \to 1^+} \sum_{p \in M} \frac{1}{p^s} / \log \frac{1}{s - 1}, \quad s > 1;
\]

\[
\sum_{p \in M} \frac{1}{p^{1+w}} = \delta(M) \log\left(\frac{1}{w}\right) + P(w), \quad w > 0,
\]

\(P(w) \) convergent.

Theorem 2 (Dirichlet 1837)

If \((a, m) = 1\) and

\[M(a) = \{p = mx + a : x \in \mathbb{Z}, \ p \ \text{prime}\}, \]

Then

\[
\delta(M(a)) = \frac{1}{\varphi(m)} = \frac{1}{\text{number of classes}}
\]

is independent of the class \([a]\) modulo \(m\).

\(\varphi \): Euler function.
Kronecker (2.2.1880) (programmatic character)

Frobenius (Nov. 1880)

Frobenius

Frobenius (3.6.1882)

Frobenius (8.6.1882)

Dedekind (1877) (Remark on decomposition

Stickelberger

Dedekind

Dedekind (abstract on the decomposition law in normal extensions and its subfields. Existence of Frobenius aut.)

Published 1894:
Zur Theorie der Ideale
(Hilbert 1894: Theory of Galoisian Number Fields, Ramification Theory)

Published 1896:
(Hurwitz: letter to Frobenius on the density theorem)
Remarks 3:

(1) **Dirichlet:** Theorem 2 follows from
$L(1, \chi) \neq 0$ for $\chi \neq \chi_0$.

Without this property one has only
$
\delta(M(a)) \leq \frac{1}{\varphi(m)}
$ in general.

(2) Theorem 2 \Rightarrow $L(1, \chi) \neq 0$ for $\chi \neq \chi_0$.

(3) **Weber:** Theorem 2 follows from the fact that there is a class field K over \mathbb{Q} to the congruence group $(\mathbb{Z}/m\mathbb{Z})^\times$, namely
$K = \mathbb{Q}(\zeta_m), \quad \zeta_m = e^{\frac{2\pi i}{m}}$.

(4) **Kronecker:** Theorem 2 follows from the fact that
$\phi_m(x) := \text{Irred}(\zeta_m)$ is of degree $\varphi(m)$.

(5) Eisenstein (1847) densities \rightarrow Minkowski
\rightarrow Siegel (1935-37) \rightarrow Tamagawa (numbers).

(6) Theorem 2 was motivated by the Quadratic Reciprocity Law (Legendre, Gauss).
2 Kronecker. Irreducibility

Theorem 4: (Gauss 1801)
For \(p \) a prime number,
\[
\phi_p(x) = x^{p-1} + x^{p-2} + \ldots + x + 1
\]
is irreducible (over \(\mathbb{Q} \)).

Proofs:
Gauss (1801), Kronecker (1845),
Schönemann (1846), Eisenstein (1847),
Dedekind (1857, for composite \(p \)).

Remark 5: Proof by Kronecker (1845)
by means of polynomials in the polynomial ring:
\(\mathbb{Q}(\zeta_p) = \mathbb{Q}[x]/\phi_p(x) \).
Suggested by Kummer (1845).

Theorem 6: (Kronecker 1855, 62, 70, 77)
\(K = \mathbb{Q}(\sqrt{-d}) \) of discriminant \(-d < 0 \),
\(\mathfrak{o}_f \) order in \(K \) of conductor \(f \),
\(h = h_f \) class number of \(\mathfrak{o}_f \),
\(C_1, \ldots, C_h \) classes of \(\mathfrak{o}_f \),
\(j(C_i) \) singular modulus of the class \(C_i \).
Then:
(1) $j(C_1), \ldots, j(C_h)$ are algebraic integers (class invariants).

(2) $j(C_1), \ldots, j(C_h)$ are the roots of a polynomial $H(x) \in K[x]$ of degree h (over K) (class equation).

(3) $H(x)$ is irreducible over K, hence the $j(C_i)$ are all conjugate (over K).

(4) $L = K(j(C_i))$

is independent of the class C_i.

(5) L/K is abelian of degree $[L : K] = h$
(hence solvable over \mathbb{Q}).

(6) $\text{Gal}(L/K) \cong \text{Cl}(\mathfrak{o}_f)$ class group of \mathfrak{o}_f.

(7) If \mathfrak{o}_f is the principal order in K, i.e. $\mathfrak{o}_f = \mathfrak{o}(K)$, then L/K is unramified (conjecture of Kronecker \rightarrow class field theory of Weber).

(8) L is an associate species to K,
i.e. every ideal in K becomes principal in L.

5
3 Kronecker Density

Kronecker’s Program:

\[
\begin{align*}
\phi_p(x) & \in \mathbb{Q}[x] \quad \text{irreducible} \\
F(x) & \in K[x] \quad \text{irreducible} \\
H(x) & \in \mathbb{Q}(\sqrt{-d})[x] \quad \text{irreducible}
\end{align*}
\]

\[
\downarrow
\]

(1) What are the characteristic properties of irreducible polynomials?

(2) Starting point: Dirichlet’s and Kummer’s Class Number Formula.
Theorem 7: (Main Theorem)
(Kronecker 1880, dedicated to Kummer)

Let \(F(x) \in \mathbb{Z}[x] \),
r: number of irreducible factors of \(F(x) \),
\(\nu_p \): number of solutions of \(F(x) \equiv 0 \) modulo \(p \),
for a prime \(p \).

Then

\[
\sum_{p} \frac{\nu_p}{p^{1+w}} = r \log \left(\frac{1}{w} \right) + P(w), \quad w > 0;
\]

\(P(w) \) convergent for small \(w \).

\[
\lim_{s \to 1^+} \sum_{p} \frac{\nu_p}{p^s} / \log \left(\frac{1}{s - 1} \right) = r, \quad s > 1.
\]

Definition 8: (Kronecker 1880)

Let \(F(x) \in \mathbb{Z}[x] \) and \(k \in \mathbb{N} \).

(1) \(M_k \) = set of primes \(p \) for which \(F(x) \equiv 0 \)
modulo \(p \) has \(k \) solutions modulo \(p \)

\[= \{ p : \nu_p = k, \ p \ prime \} \]

(2) \(D_k := \delta(M_k) = \lim_{s \to 1^+} \sum_{p \in M_k} \frac{1}{p^s} / \log \left(\frac{1}{s - 1} \right) \)
Theorem 9:

Let $F(x) \in \mathbb{Z}[x]$, $n =$ degree of $F(x)$,
$r =$ number of irreducible factors of $F(x)$,
$D_k = \delta(M_k)$, $M_k = \{p : \nu_p = k, p \text{ prime}\}$,
k $\in \mathbb{N}$.

Then

(1) $\sum_{k=1}^{n} kD_k = r$, \quad in particular

(2) $\sum_{k=1}^{n} kD_k = 1 \iff F(x)$ is irreducible.

Remarks 10:

(1) *Kummer, Dedekind*: $F(x) \in \mathbb{Z}[x]$, $F(x)$ irreducible, $F(\alpha) = 0$, $K = \mathbb{Q}(\alpha)$,
p prime, $p \nmid [\mathcal{O}(K) : \mathbb{Z}[\alpha]]$.
Decomposition of p in $K = \mathbb{Q}(\alpha) \iff$
Decomposition of $F(x)$ modulo p.

Hence

$M_k = \{p \text{ prime: } p \text{ splits off } k \text{ prime divisors } \mathfrak{p}, \mathfrak{p} \mid p, \text{ of first degree in } K\}$

Hence
\(D_k \) depends only on the decomposition law of the primes \(p \) with respect to \(\mathbb{Q}(\alpha)/\mathbb{Q} \).

(2) **Kronecker:** \(D_k \) depends only on the Galois group \(G \) of \(F(x) \): \(G = \text{Gal}(F'(x)) \), in particular on the affect \(\mathcal{A} = (S_n : G) \) or the order of affect \(a = |\mathcal{A}| = \frac{|S_n|}{|G|} = \frac{n!}{g} \) of \(G \).

(3) **Kronecker:** The densities \(D_k \) exist, if \(G = \text{Gal}(F(x)) = S_n \).

Hilbert (1897): If \(n - 1 \) among the \(n \) densities \(D_k \) exist, then all \(n \) densities exist.

Frobenius (1896): The densities \(D_k \) exist.

(4) **Kronecker** gives a series of remarkable properties for \(D_k \) (without proofs) \(\rightarrow \)

Frobenius (1887) on double congruences \(\rightarrow \)

on group theory.
Theorem 11:

(1) $F(x) \in \mathbb{Z}[x]$ irreducible, of degree n
and galois \Rightarrow
$D_i = 0$ for $i = 1, \ldots, n - 1$, $D_n = \frac{1}{n}$.

(2) $F(x) \in \mathbb{Z}[x]$ irreducible, of degree n \Rightarrow
$D_n = \frac{1}{a} = \frac{g}{n!}$,
where $g = |G|$, $G = \text{Gal}(F(x))$.

(3) $F(x) \in \mathbb{Z}[x]$ irreducible \Rightarrow there are infinitely many primes p such that
$F(x) \equiv (x - a_1) \cdots x - a_n)$ modulo p, $a_i \in \mathbb{Z}$.

(4) $F(x) \in \mathbb{Z}[x]$ irreducible,
$F(\alpha) = 0$, $K = \mathbb{Q}(\alpha)$ \Rightarrow there are infinitely many primes p such that p is completely split
in $K = \mathbb{Q}(\alpha)$.

(5) $F(x), F'(x) \in \mathbb{Z}[x],$
$\deg F(x) = \deg F'(x) = q$ prime.
$\nu_p = \nu'_p$ for all p \Rightarrow $D_i = D'_i$
for all $i = 1, \ldots, q$ \Rightarrow $N = N'$,
where N, N' are the normal fields of F and F'.
Remarks 12:

(1) *Kronecker*: (5) is a Local-Global-Principle (Boundary Problem for all primes).

(2) For $F(x)$ *abelian*, this boundary problem is solved by Class Field Theory (Decomposition Law).

Theorem 13:

Let α be a primitive λ-th root of unity,

$F(x) = x^{\lambda-1} + x^{\lambda-2} + \ldots + x + 1$, λ prime,

$F(\alpha) = 0$, $G(x) = \text{Irred} (\alpha)$, $r = \deg G(x)$.

$M_1 = \{p = \lambda x + 1 : x \in \mathbb{Z}, p \text{ prime}\}$

$= \{p \text{ prime: } F(x) \equiv 0 \text{ modulo } p \text{ admits } \lambda - 1 \text{ roots}\}$

Then

(1) $\delta(M_1) = \frac{1}{r}$

(2) $r = \lambda - 1$,

hence $F(x) = G(x)$, and $F(x)$ is irreducible.

Proof: From the Class Number Formula
\[
\lim_{s \to 1^+} \log \frac{\prod_{\chi \neq \chi_0} L(s, \chi)}{s-1} = \lim_{s \to 1^+} \sum_{p \in M_1} \frac{\lambda - 1}{p^s} = \frac{\lambda - 1}{r} \log \frac{1}{s-1}.
\]

Remarks 14:

(1) **Kronecker:** Key point
Regulator \(\neq 0 \) \(\Rightarrow \) \(L(1, \chi) \neq 0 \) for \(\chi \neq \chi_0 \).

(2) Can be generalized to \(\lambda \) composite.

(3) Analogous proof for the Class Equation
\(H(x) \subseteq K[x] \), \(K = \mathbb{Q}(\sqrt{-d}) \).
\(M_1 \) is replaced by
\[M = \{ p \text{ prime}: \left(\frac{-d}{p} \right) = 1, \ p \text{ is represented by the principal class of binary quadratic forms of discriminant } -d \}. \]
Euler (1742, 1772) $\zeta(s)$

Gauss (1801)

Kummer (1845)

Dirichlet (1837) $L(K, s)$

Dedekind (1871) $S_k(s)$

Weber (1897) $L(K, K, s)$

Hilbert (1897) Frobenius (1880, 1896)

Takagi (1920)

Artin (1923) $L(M|K, K, s)$ Čebočarëv (1925)

Artin (1927)
4 Frobenius and Tchebotarev Density

Theorem 15: (Frobenius 1896)

N/\mathbb{Q} normal of degree $h = [N : \mathbb{Q}]$ and discriminant $d(N/\mathbb{Q})$, $H = \text{Gal}(N/\mathbb{Q})$, $\mathfrak{o} = \mathfrak{o}(N)$ integers in N.

For any prime ideal $\mathfrak{p} \subseteq \mathfrak{o}$ with $\mathfrak{p} \not| d(N/\mathbb{Q})$, there exists a unique substitution

$$\sigma = F = F_\mathfrak{p} \in H$$

such that

$$F(\omega) \equiv \omega^p \mod \mathfrak{p}, \text{ for all } \omega \in \mathfrak{o},$$

where $\mathfrak{p} | p$, i.e. $p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Z}$.

Theorem 16:

Let $\mathfrak{p} \subseteq \mathfrak{o}$, \mathfrak{p} a prime ideal in N, $\mathfrak{p} \not| d(N/\mathbb{Q})$, $H = \text{Gal}(N/\mathbb{Q})$.

Then

1. $Fp\sigma = \sigma^{-1}F_p\sigma, \quad \sigma \in H.$

2. $p \mapsto [F_p] = \{\sigma^{-1}F_p\sigma : \sigma \in H\} = F(p)$

is well defined and depends only on p.

13
Problem:

Given \(\tau \in H = \text{Gal}(N/\mathbb{Q}) \),
\[C = [\tau] = \{ \sigma^{-1} \tau \sigma : \sigma \in H \}, \]
the conjugacy class of \(\tau \),
\[M_C = \{ p \text{ primes: } F(p) = C \}, \]
determine \(D_C := \delta(M_C) \).

Theorem 17: (Frobenius 1896)

Let \(N/\mathbb{Q} \) be normal, \(H = \text{Gal}(N/\mathbb{Q}) \),
\(C_1, C_2, \ldots, C_l \) the conjugacy classes in \(H \),
\(h_\lambda = |C_\lambda|, \; \lambda = 1, 2, \ldots, l. \)

\(\mathfrak{p} \) a prime ideal in \(N \), \(\mathfrak{p} \not| d(N/\mathbb{Q}) \), \(p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Z} \),
\(F = F_\mathfrak{p} \) the Frobenius substitution of \(\mathfrak{p} \), \(F \in C_\lambda \),
\(v_\lambda = |\{ \sigma \in H : \sigma^{-1}F\sigma = F \}|. \)
\(h = |H| = h_\lambda v_\lambda, \; \lambda = 1, 2, \ldots, l. \)
\[M_\lambda = \{ p \text{ primes: } F(p) = C_\lambda \}. \]

If \(H = S_n \), then
\[\sum_{p \in M_\lambda} \frac{1}{p^{1+w}} = \frac{h_\lambda}{h} \log \left(\frac{1}{w} \right) + P_\lambda(w), \; \text{i. e.} \]
\[D_\lambda = \delta(M_\lambda) = \frac{h_\lambda}{h} = \frac{1}{v_\lambda}. \]
Remark:
For general $H = \text{Gal}(N/\mathbb{Q})$, Frobenius could only show a weaker result:

Theorem 18:

N/\mathbb{Q} normal, $H = \text{Gal}(N/\mathbb{Q})$, $h = |H|$.
$F \in F(p)$, $f = |< F >|$ the order of F,
$A(F) = \bigcup_{(r,f)=1} F(p)^r = \bigcup_{(r,f)=1} [F^r]$
the division of F,
A_1, \ldots, A_t all divisions in H,
$a_{\lambda} = |\{ \sigma \in H : \sigma \in A_\lambda \}| = |A_\lambda|
the number of substitutions lying in A_λ,
$A_\lambda = \{ p \text{ primes: } F(p) \subseteq A_\lambda \}$.

Then

$$\delta(A_\lambda) = \frac{a_\lambda}{h}.$$

Theorem 19: (Tchebotarev, 1925)
Theorem 17 is true for any Galois group $H = \text{Gal}(N/\mathbb{Q})$ over \mathbb{Q}.

Remark 20:
Theorem 19 was already conjectured by Frobenius (1896).