On the Betti numbers of semi-algebraic sets Richard Pollack

A stroll though Betti number bounds and their Applications in Discrete Geometry

Ricky Pollack

Outline of talk

1. Bounds from antiquaty

- (a) The Oleinik-Petrovski/Milnor/Thom bound ('49, '64, '65)
- (b) Warren bounds on the number of strict sign conditions ('68)

2. Applications

- (a) Upper bounds for the number of simple order types (Goodman-P '86, Alon'86)
- (b) Upper bounds for the number of simple polytopes (Goodman-P '86, Alon "86)
- (c) Upper bounds for the number of real matrois (Alon '86)
- (d) Upper bounds for the number weaving patterns (Pach-P '90)

3. Bounds on the number of connected components of sign condition (P-Roy '93)

4. Applications

- (a) Upper bounds for the number of Isotopy classes (P-Roy '93)
- (b) Universality theorems (Mnëv ('88), Richter-Gebert ('95), Kapovich-Millson ('99)
- 5. Bounds on the number of connected components of sign condition restricted to a variety (Basu-P-Roy '96)

6. Applications

- (a) Geometric Transversal Theory, in particular
- (b) Upper bounds for the number of Geometric Permutation induced by k—flat transversals (Goodman-P-Wenger '96)
- 7. Bounding the individual Betti numbers (Basu '01)
- 8. Putting things together (Basu-P-Roy '03)

The Oleinik-Petrovski/Thom/Milnor bound

Let b(k, d) be the maximum of the sum of the Betti numbers of any algebraic set defined by polynomials of degree $\leq d$ in \mathbb{R}^k . The Oleinik-Petrovski/Thom/Milnor bound is the following:

$$b(k,d) \le d(2d-1)^{k-1}.$$

Moreover, if instead we let b(k, d, s) be the maximum of the sum of the Betti numbers of any basic semi-algebraic set defined by s polynomials of total degree d in \mathbb{R}^k then,

$$b(k,d) \le s^k d(2d-1)^{k-1}.$$

The **order type** of the labelled points $\{x_1, \ldots, x_n\} \subset R^d$ is determined by the signs of the $\binom{n}{d+1}$ determinants

$$\left(\det \left(\begin{array}{ccc} 1 & x_{i_0}^1 & \cdots & x_{i_0}^d \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_{i_d}^1 & \cdots & x_{i_d}^d \end{array}\right)\right)_{1 \leq i_0 < \cdots < i_d \leq n}.$$

Some sets in \mathbb{R}^N describing geometric phenomena in \mathbb{R}^2 , \mathbb{R}^3 and \mathbb{R}^4 .

- (a) The realization space of an order type in the plane (N = 2n).
- (b) The configuration space of the combinatorial type of a 4-polytope (N = 4n).
- (c) The configuration space of a planar linkage (also molecular models).

Connected component of sign conditions on a variety

$$\mathcal{P} = \{P_1, \dots, P_s\} \subset R[X_1, \dots, X_k]$$

$$\sigma \in \{-1, 0, +1\}^s$$

$$R(\sigma) = \{x \in V \mid \sigma = (\operatorname{sign}(P_1(x)), \dots, \operatorname{sign}(P_s(x)))\}$$

Let $|\sigma|$ denote the number of cells of $R(\sigma)$

Theorem

If Q and all $P \in \mathcal{P}$ have degrees at most d and V = Z(Q) is an algebraic variety of real dimension k'. Then,

$$\sum |\sigma| = s^{k'}(O(d))^k.$$

Geometric Transversal Theory

- (a) Helly's theorem
- (b) Vincensini's Problem
- (c) Hadwiger's Transversal theorem
- (d) Geometric permutations

Geometric permutations

- (a) $g_1^2(n) = 2n 2$ (Edelsbrunner-Sharir '90),
- (b) $g_1^d(n) = \Omega(n^{d-1})$ (Katchalski-Lewis-Liu '92),
- (c) $g_1^d(n) = O(n^{2d-2})$ (Wenger '90),
- (d) $g_{d-1}^d(n) = O(n^{d-1})$ (Cappell-Goodman-Pach-P-Sharir-Wenger '94),
- (e) $g_k^d(n) = O(k)^{d^2} \left(\binom{2^{k+1}-2}{k} \binom{n}{k+1} \right)^{k(d-k)}$ (or $g_k^d(n) = O(n^{k(k+1)(d-k)})$ for fixed k (Goodman-P-Wenger '96).

Bounding the topology of a semi-algebraic set on a variety

Sum of Betti numbers: (Basu'96)

If $S \subset R^k$ is closed, defined by s polynomials and contained in Z(Q) of dimension k' and $\deg P_i$, $\deg Q \leq d$ then,

$$\sum_{i} \beta_{i}(S) = s^{k'}(O(d))^{k}.$$

Putting things together

Theorem 1 (Basu-P-Roy '03)

$$b_i(d, k, k', s) \le \sum_{0 \le j \le k' - i} {s \choose j} 4^j d(2d - 1)^{k - 1}.$$

Where $b_i(d, k, k', s)$ is the maximum of $b_i(\mathcal{Q}, \mathcal{P})$ over all \mathcal{Q}, \mathcal{P} where \mathcal{Q} and \mathcal{P} are finite subsets of $R[X_1, \ldots, X_k]$, whose elements have degree at most $d, \#(\mathcal{P}) = s$ (i.e. \mathcal{P} has s elements) and the algebraic set $Z(\mathcal{Q})$ has dimension k'. With $b_i(\sigma)$ denoting the *i*-th Betti number of $\mathcal{R}(\sigma, Z)$ and let

$$b_i(\mathcal{Q}, \mathcal{P}) = \sum_{\sigma} b_i(\sigma).$$