NOTETAKER CHECKLIST FORM
(Complete one for each talk.)

Name: Elizabeth Gross Email/Phone: egross7@uic.edu

Speaker's Name: Uwe Nagel

Talk Title: Enumerations deciding the Weak Lefschetz Property

Date: 12/4/2012 Time: 11:30 am / pm (circle one)

List 6-12 key words for the talk: weak lefschetz property, monomial
ideals, lozenge tilings, lattice paths,Mahonian determinants,
syzygy bundles, Laplace equations, Togliatti system
Please summarize the lecture in 5 or fewer sentences:
- Discusses an approach for studying monomial ideals
 in three variables using lozenge tilings.
- Gives a combinatorial interpretation of
 the weak lefschetz property. Explores Laplace
 equations as an application.

CHECK LIST
(This is NOT optional, we will not pay for incomplete forms)

☐ Introduce yourself to the speaker prior to the talk. Tell them that you will be the note taker, and that
you will need to make copies of their notes and materials, if any.

☐ Obtain ALL presentation materials from speaker. This can be done before the talk is to begin or after
the talk; please make arrangements with the speaker as to when you can do this. You may scan and
send materials as a .pdf to yourself using the scanner on the 3rd floor.
 • Computer Presentations: Obtain a copy of their presentation
 • Overhead: Obtain a copy or use the originals and scan them
 • Blackboard: Take blackboard notes in black or blue PEN. We will NOT accept notes in pencil
 or in colored ink other than black or blue.
 • Handouts: Obtain copies of and scan all handouts

☐ For each talk, all materials must be saved in a single .pdf and named according to the naming
convention on the "Materials Received" check list. To do this, compile all materials for a specific talk
into one stack with this completed sheet on top and insert face up into the tray on the top of the
scanner. Proceed to scan and email the file to yourself. Do this for the materials from each talk.

☐ When you have emailed all files to yourself, please save and re-name each file according to the naming
convention listed below the talk title on the "Materials Received" check list.
(YYYY.MM.DD.TIME.SpeakerLastName)

☐ Email the re-named files to notes@msri.org with the workshop name and your name in the subject
line.
Enumerations of the Weak Lefschetz Property

joint work with
David Cook II
(University of Notre Dame)

Uwe Nagel
(University of Kentucky)

MSRI, December 4, 2012
Outline

- Lefschetz Properties
- Lozenge tilings, perfect matchings, and lattice paths
- Mahonian Determinants
- Type 2 algebras
- Existence of Laplace equations
Lefschetz Properties

\[R = K[x_1, \ldots, x_n], \, K \text{ an infinite field} \]
\[I \subset R \text{ homogeneous, artinian ideal (dim}_K R/I < \infty) \]

Definition

A \[= R/I \] has the Weak Lefschetz Property (WLP) if there is a linear form \(\ell \in R \) such that the multiplication \(\times \ell: [A] \rightarrow [A]_{i+1} \) has maximal rank for all \(i \) (i.e. is injective or surjective).

A has the Strong Lefschetz Property (SLP) if \(\times \ell^d: [A] \rightarrow [A]_{i+d} \) has maximal rank for all \(i \) and \(d \).

Remark:
(i) \(\ell \) general.
(ii) WLP implies restrictions on Hilbert function (\(g \)-Theorem (Stanley)).
(iii) WLP and SLP are related to Fröberg’s conjecture.
Lefschetz Properties

\[R = K[x_1, \ldots, x_n], \quad K \text{ an infinite field} \]
\[I \subset R \text{ homogeneous, artinian ideal (dim}_K R/I < \infty) \]

Definition

\(A = R/I \) has the **Weak Lefschetz Property (WLP)** if there is a linear form \(\ell \in R \) such that the multiplication
\[\times \ell : [A]_i \to [A]_{i+1} \]
has maximal rank for all \(i \) (i.e. is injective or surjective).

\(A \) has the **Strong Lefschetz Property (SLP)** if
\[\times \ell^d : [A]_i \to [A]_{i+d} \]
has maximal rank for all \(i \) and \(d \).

Remark:

(i) \(\ell \) general.

(ii) WLP implies restrictions on Hilbert function (Theorem (Stanley)).

(iii) WLP and SLP are related to Fröberg's conjecture.
Lefschetz Properties

\[R = K[x_1, \ldots, x_n], \quad K \text{ an infinite field} \]
\[I \subset R \text{ homogeneous, artinian ideal (dim}_K R/I < \infty) \]

Definition

\(A = R/I \) has the **Weak Lefschetz Property (WLP)** if there is a linear form \(\ell \in R \) such that the multiplication

\[\times \ell : [A]_i \to [A]_{i+1} \]

has maximal rank for all \(i \) (i.e. is injective or surjective).

\(A \) has the **Strong Lefschetz Property (SLP)** if

\[\times \ell^d : [A]_i \to [A]_{i+d} \]

has maximal rank for all \(i \) and \(d \).

Remark:

(i) \(\ell \) general.

(ii) WLP implies restrictions on Hilbert function

\((g\text{-Theorem (Stanley))} \).

(iii) WLP and SLP are related to Fröberg’s conjecture.
Known results

Theorem

- (Harima, Migliore, N., Watanabe, 2003) If $n \leq 2$ and $\text{char } K = 0$, then A has the SLP.
- (Migliore, Zanello, 2007) If $n \leq 2$, then A always has the WLP.
Known results

Theorem

- (Harima, Migliore, N., Watanabe, 2003) If $n \leq 2$ and $\text{char } K = 0$, then A has the SLP.
- (Migliore, Zanello, 2007) If $n \leq 2$, then A always has the WLP.

Theorem (Stanley, 1980; ...)

If $\text{char } K = 0$, then each monomial c.i., $I = (x_1^{a_1}, \ldots, x_n^{a_n})$, has the SLP.
<table>
<thead>
<tr>
<th>Known results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorem</td>
</tr>
<tr>
<td>(Harima, Migliore, N., Watanabe, 2003) If $n \leq 2$ and char $K = 0$, then A has the SLP.</td>
</tr>
<tr>
<td>(Migliore, Zanello, 2007) If $n \leq 2$, then A always has the WLP.</td>
</tr>
<tr>
<td>Theorem (Stanley, 1980; ...)</td>
</tr>
<tr>
<td>If char $K = 0$, then each monomial c.i., $I = (x_1^{a_1}, \ldots, x_n^{a_n})$, has the SLP.</td>
</tr>
<tr>
<td>Theorem (Harima, Migliore, N., Watanabe, 2003)</td>
</tr>
<tr>
<td>If $n = 3$, char $K = 0$, then every c.i. $I = (f_1, f_2, f_3)$ has the WLP.</td>
</tr>
</tbody>
</table>
Monomial ideals in three variables

\(I \subset R = K[x, y, z] \) artinian monomial ideal.
$I \subset R = K[x, y, z]$ artinian monomial ideal.

Theorem (Boij, Migliore, Miró-Roig, N., Zanello, 2012)

If $n = 3$, char $K = 0$, and R/I is level of type 2, then R/I has the WLP.

Counterexamples if R/I is not level or if char $K > 0$.
Monomial ideals in three variables

$I \subset R = K[x, y, z]$ artinian monomial ideal.

Theorem (Boij, Migliore, Miró-Roig, N., Zanello, 2012)

If $n = 3$, char $K = 0$, and R/I is level of type 2, then R/I has the WLP.

Counterexamples if R/I is not level or if char $K > 0$.

Example

- If $I = (x^7, y^7, z^7, x^2y^2z^2)$, then R/I has the WLP if and only if the characteristic of K is not 2 or 7.
Monomial ideals in three variables

$I \subset R = K[x, y, z]$ artinian monomial ideal.

Theorem (Boij, Migliore, Miró-Roig, N., Zanello, 2012)

If $n = 3$, char $K = 0$, and R/I is level of type 2, then R/I has the WLP.

Counterexamples if R/I is not level or if char $K > 0$.

Example

- If $I = (x^7, y^7, z^7, x^2y^2z^2)$, then R/I has the WLP if and only if the characteristic of K is not 2 or 7.
- If $I = (x^{20}, y^{20}, z^{20}, x^3y^8z^{13})$, then R/I has the WLP if and only if the characteristic of K is not 2, 3, 5, 7, 11, 17, 19, 23, or
Monomial ideals in three variables

$I \subset R = K[x, y, z]$ artinian monomial ideal.

Theorem (Boij, Migliore, Miró-Roig, N., Zanello, 2012)

If $n = 3$, char $K = 0$, and R/I is level of type 2, then R/I has the WLP.

Counterexamples if R/I is not level or if char $K > 0$.

Example

- If $I = (x^7, y^7, z^7, x^2y^2z^2)$, then R/I has the WLP if and only if the characteristic of K is not 2 or 7.
- If $I = (x^{20}, y^{20}, z^{20}, x^3y^8z^{13})$, then R/I has the WLP if and only if the characteristic of K is not 2, 3, 5, 7, 11, 17, 19, 23, or 20554657.
Triangular region \mathcal{T}_d: equilateral triangle of side length d, subdivided into equilateral unit triangles:

- $\binom{d}{2}$ downward-pointing (▽) - labeled by monom. in $[R]_{d-2}$, and
- $\binom{d+1}{2}$ upward-pointing (△) - labeled by monom. in $[R]_{d-1}$.

Diagrams:

- \mathcal{T}_2: x, y, z
- \mathcal{T}_3: x^2, xy, xz, y, y^2, yz, z, z^2
- \mathcal{T}_4: x^3, x^2y, x^2z, xy^2, xy, xyz, xz, xz^2, y^2z, yz^2, z^3
$I \subset R$ any monomial ideal
$d \geq 1$ any integer
triangular region $T_d(I)$: obtained from \mathcal{T}_d by removing triangles with labels in I.

Example 1

$I = (xy, y^2, z^3)$, $d = 4$.

\mathcal{T}_4

$T_4(xy, y^2, z^3)$
Example 2

\[I = (x^a y^b z^c). \]
Lozenge tilings

\(T \subset T_d \) any subregion

Lozenge (diamond, callisson, rhombus):
glue an \(\nabla \)- and an \(\triangle \)-triangle along the common edge
Lozenge tilings

\(T \subset T_d \) any subregion

Lozenge (diamond, callisson, rhombus):

Glue an \(\bigtriangledown \)- and an \(\bigtriangleup \)-triangle along the common edge

Tile \(T \) by lozenges if possible

A tiling of \(T_8(x^7, y^7, z^6, xy^4z^2, x^3yz^2, x^4yz) \)

Necessary tileability condition: balanced (\(\#\bigtriangledown = \#\bigtriangleup \))
$T \subset T_d$ any subregion

$G(T)$ bipartite graph:
- $B =$ set of centers of \triangledown-triangles, ordered revlex by labels,
- $W =$ set of centers of \triangle-triangles, ordered revlex by labels
- Vertices: $B \cup W$
- Edges: (B_i, W_j) if the corresponding triangles share an edge

Bi-adjacency matrix $Z(T)$: zero-one matrix of size $\#B \times \#W$:

$$Z(T)_{(i,j)} = \begin{cases}
1 & \text{if } (B_i, W_j) \text{ is an edge} \\
0 & \text{otherwise}
\end{cases}$$
Assume T is balanced ($\#B = \#W$):

Perfect matching of $G(T)$: a set of pairwise non-adjacent edges of $G(T)$ such that each vertex is matched
Assume T is balanced ($\#B = \#W$):

Perfect matching of $G(T)$: a set of pairwise non-adjacent edges of $G(T)$ such that each vertex is matched.

\[
\begin{array}{c}
1 - 1 \\
\end{array}
\]

lozenge tiling of T
Proposition

If T is balanced, then

$$
\text{#lozenge tilings of } T = \text{#perfect matchings} = \text{perm } Z(T).
$$
Proposition

If T is balanced, then

$$\#\text{lozenge tilings of } T = \#\text{perfect matchings} = \text{perm } Z(T).$$

Definition

A lozenge tiling τ of T induces a bijection $B \to W$, $B_i \mapsto W_{\sigma(i)}$, where $\sigma \in S_{\#B}$. The perfect matching sign of τ is

$$\text{msgn } \tau := \text{sgn } \sigma.$$
Proposition

If \(T \) is balanced, then
\[
\text{#lozenge tilings of } T = \text{#perfect matchings} = \text{perm } Z(T).
\]

Definition

A lozenge tiling \(\tau \) of \(T \) induces a bijection \(B \to W, B_i \mapsto W_{\sigma(i)} \), where \(\sigma \in \mathfrak{S}_{\#B} \). The perfect matching sign of \(\tau \) is
\[
\text{msgn } \tau := \text{sgn } \sigma.
\]

Corollary

\[
\sum_{\tau \text{ tiling of } T} \text{msgn } \tau := \text{det } Z(T).
\]
Example

Consider $T = T_6(x^3, y^4, z^5)$.

$Z(T) = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{bmatrix}$.

perm $Z(T) = \det Z(T) = 10$.
$T \subset T_d$ any subregion

$L(T)$: set of midpoints of NE edges of triangles in T

- Label the vertices of $L(T)$ that are only on \triangle-triangles by A_1, \ldots, A_m according to the revlex order of the monomials, beginning with the smallest.
- Label the vertices of $L(T)$ that are only on \triangle-triangles by E_1, \ldots, E_n according to the revlex order of the monomials, beginning with the smallest.

A **lattice path** from A_i to E_j is a path in $L(T)$ where each single move is to the East (\rightarrow) or to the South-East ($\downarrow\rightarrow$).
Lattice paths

$T \subset T_d$ any subregion

$L(T)$: set of midpoints of NE edges of triangles in T

- Label the vertices of $L(T)$ that are only on \triangle-triangles by A_1, \ldots, A_m according to the revlex order of the monomials, beginning with the smallest.

- Label the vertices of $L(T)$ that are only on ∇-triangles by E_1, \ldots, E_n according to the revlex order of the monomials, beginning with the smallest.

A **lattice path** from A_i to E_j is a path in $L(T)$ where each single move is to the East (\rightarrow) or to the South-East (\nwarrow).
Lattice path matrix $N(T)$: size $m \times n$

$$N(T)_{(i,j)} = \#\text{lattice paths in } \mathbb{Z}^2 \text{ from } A_i \text{ to } E_j.$$
Lattice path matrix $N(T)$: size $m \times n$

$$N(T)_{(i,j)} = \#\text{lattice paths in } \mathbb{Z}^2 \text{ from } A_i \text{ to } E_j.$$

Assume T is balanced ($m = n$):
family of non-intersecting lattice paths in $L(T)$ (from A_1, \ldots, A_m to E_1, \ldots, E_m)
Lattice path matrix $N(T)$: size $m \times n$

$$N(T)_{(i,j)} = \#\text{lattice paths in } \mathbb{Z}^2 \text{ from } A_i \text{ to } E_j.$$

Assume T is balanced ($m = n$):
family of non-intersecting lattice paths in $L(T)$ (from A_1, \ldots, A_m to E_1, \ldots, E_m) \leftrightarrow lozenge tiling τ of T
Lattice paths

Lattice path matrix $N(T)$: size $m \times n$

$$N(T)_{(i,j)} = \# \text{lattice paths in } \mathbb{Z}^2 \text{ from } A_i \text{ to } E_j.$$

Assume T is balanced ($m = n$):

family of non-intersecting lattice paths in $L(T)$ (from A_1, \ldots, A_m to E_1, \ldots, E_m) \[\longleftrightarrow \] lozenge tiling τ of T

Definition

The **lattice path sign** of a lozenge tiling τ of T is

$$\text{lpsgn } \tau := \text{ sgn } \sigma,$$

where $\sigma \in \mathcal{S}_m$ is the permutation such that, for all i, the path starting in A_i ends in $E_{\sigma(i)}$.

Theorem (Lindström, Gessel & Viennot)

If T is balanced, then

$$\sum_{\tau \text{ tiling of } T} \text{lpsgn } \tau = \det N(T).$$
Lattice path matrix $N(T)$: size $m \times n$

$$N(T)_{i,j} = \# \text{lattice paths in } \mathbb{Z}^2 \text{ from } A_i \text{ to } E_j.$$

Assume T is balanced ($m = n$):
family of non-intersecting lattice paths in $L(T)$ (from A_1, \ldots, A_m to E_1, \ldots, E_m) \(\longleftrightarrow\) lozenge tiling τ of T

Definition

The **lattice path sign** of a lozenge tiling τ of T is

$$\text{lpsgn } \tau := \text{sgn } \sigma,$$

where $\sigma \in S_m$ is the permutation such that, for all i, the path starting in A_i ends in $E_{\sigma(i)}$.

Theorem (Lindström, Gessel & Viennot)

If T is balanced, then

$$\sum_{\tau \text{ tiling of } T} \text{lpsgn } \tau := \det N(T).$$
Example

\[T = T_6(x^3, y^4, z^5) \text{ and its rotations.} \]
$T = T_d(I) \subset T_d$

τ lozenge tiling of T:

- perfect matching sign msgn_τ - enumerated by $\det Z(T)$
- lattice path sign lpsgn_τ - enumerated by $\det N(T)$
Comparisons

\[T = T_d(l) \subset T_d \]

\(\tau \) lozenge tiling of \(T \):
- perfect matching sign \(\text{msgn}\, \tau \) - enumerated by \(\det Z(T) \)
- lattice path sign \(\text{lpsgn}\, \tau \) - enumerated by \(\det N(T) \)

Theorem

(a) Let \(\tau \) and \(\tau' \) be two lozenge tilings of \(T \). Then

\[\text{msgn}(\tau) \cdot \text{lpsgn}(\tau) = \text{msgn}(\tau') \cdot \text{lpsgn}(\tau'). \]

(b)

\[|\det Z(T)| = |\det N(T)|. \]
Comparisons

\(T = T_d(I) \subset T_d \)

\(\tau \) lozenge tiling of \(T \):

- perfect matching sign \(\text{msgn} \tau \) - enumerated by \(\det Z(T) \)
- lattice path sign \(\text{lpsgn} \tau \) - enumerated by \(\det N(T) \)

Theorem

(a) Let \(\tau \) and \(\tau' \) be two lozenge tilings of \(T \). Then

\[
\text{msgn}(\tau) \cdot \text{lpsgn}(\tau) = \text{msgn}(\tau') \cdot \text{lpsgn}(\tau').
\]

(b)

\[
| \det Z(T) | = | \det N(T) |.
\]

Corollary

If \(T \) is tileable and simply connected, then

\[
| \det Z(T) | = \text{perm } Z(T) > 0.
\]
Example

\[T = T_6(x^3, y^4, z^5). \]

Then

\[10 = |\det N(T)| = |\det Z(T)| = \text{perm}(T). \]
Mahonian determinants

A $2 \times 6 \times 3$ plane partition. The associated lozenge tiling.

Theorem (MacMahon)

The number of plane partitions in an $a \times b \times c$ box is

$$
\text{Mac}(a, b, c) := \frac{\mathcal{H}(a)\mathcal{H}(b)\mathcal{H}(c)\mathcal{H}(a + b + c)}{\mathcal{H}(a + b)\mathcal{H}(a + c)\mathcal{H}(b + c)},
$$

where $\mathcal{H}(n) := \prod_{i=0}^{n-1} i!$ is the hyperfactorial of n.

\begin{align*}
3 &\quad 3 &\quad 2 &\quad 2 &\quad 2 &\quad 1 \\
3 &\quad 2 &\quad 2 &\quad 1 &\quad 0 &\quad 0
\end{align*}
Proposition

If $T = T_d(x^a, y^b, z^c)$ is balanced, that is, $d = \frac{1}{2}(a + b + c)$ is an integer, then

$$|\det Z(T)| = \perm Z(T) = \text{Mac}(d - a, d - b, d - c).$$
Proposition

If \(T = T_d(x^a, y^b, z^c) \) is balanced, that is, \(d = \frac{1}{2}(a + b + c) \) is an integer, then

\[|\det Z(T)| = \text{perm } Z(T) = \text{Mac}(d - a, d - b, d - c). \]

Proposition

If \(T = T_d(x^{a+\alpha}, y^b, z^c, x^a y^\beta, x^a z^\gamma) \) is balanced, then

\[|\det Z(T)| = \text{perm } Z(T) \]
\[= \text{Mac}(d - a, d - b, d - c) \text{Mac}(d - a - \alpha, d - a - \beta, d - a - \gamma). \]
Proposition

If $T = T_d(x^a, y^b, z^c, x^\alpha y^\beta)$ is balanced (as below), then

$$|\det Z(T)| = \text{perm} Z(T)$$

is

$$\text{Mac}(a+\beta-d, d-a, d-(\alpha+\beta)) \text{ Mac}(\alpha+b-d, d-b, d-(\alpha+\beta))$$

$$\times \frac{\mathcal{H}(d-a+d-(\alpha+\beta))\mathcal{H}(d-b+d-(\alpha+\beta))\mathcal{H}(d-c+d-(\alpha+\beta))\mathcal{H}(d)}{\mathcal{H}(a)\mathcal{H}(b)\mathcal{H}(c)\mathcal{H}(d-(\alpha+\beta))}.$$
$I \subset R = K[x, y, z]$ artinian monomial ideal.

If K is infinite, then R/I has the WLP iff multiplications by
$
\ell = x + y + z
$
have maximal rank.

Theorem
For each $d \geq 1$, the coordinate matrix of
$R/I^d - 2x + y + z \to R/I^{d-1}$
with respect to monomial bases in
revlex order is $Z(T_d(I))$.

$\dim K[R/(I, x+y+z)]_{d-1} = \dim K(\ker N(T_d(I)))$.

Corollary
Assume $T = T_d(I)$ is balanced and the socle elements of
R/I have degrees $\geq d-1$. TFAE:
R/I has the WLP.

$\det Z(T_d(I)) \mod (\text{char } K) \neq 0$.

$\det N(T_d(I)) \mod (\text{char } K) \neq 0$.
Relation to WLP

$I \subset R = K[x, y, z]$ artinian monomial ideal.

If K is infinite, then R/I has the WLP iff multiplications by $\ell = x + y + z$ have maximal rank.

Theorem

For each $d \geq 1$, the coordinate matrix of $[R/I]_{d-2}^{x+y+z} \rightarrow [R/I]_{d-1}$ with respect to monomial bases in revlex order is $Z(T_d(I))$.

$\dim_K[R/(I, x + y + z)]_{d-1} = \dim_K(\ker N(T_d(I))^T)$.
Relation to WLP

\[I \subset R = K[x, y, z] \] artinian monomial ideal.

If \(K \) is infinite, then \(R/I \) has the WLP iff multiplications by
\(\ell = x + y + z \) have maximal rank.

Theorem

For each \(d \geq 1 \), the coordinate matrix of
\[[R/I]_{d-2}^{x+y+z} \rightarrow [R/I]_{d-1} \] with respect to monomial bases in revlex order is \(Z(T_d(I)) \).

\[\dim_K[R/(I, x + y + z)]_{d-1} = \dim_K(\ker N(T_d(I))^T). \]

Corollary

Assume \(T = T_d(I) \) is balanced and the socle elements of \(R/I \) have degrees \(\geq d - 1 \). TFAE:

- \(R/I \) has the WLP.
- \(\det Z(T_d(I)) \mod (\text{char } K) \neq 0. \)
- \(\det N(T_d(I)) \mod (\text{char } K) \neq 0. \)
Proposition

If R/I has type two, then I has one of the following two forms:

(i) $I = (x^a, y^b, z^c, x^\alpha y^\beta)$,

(ii) $I = (x^a, y^b, z^c, x^\alpha y^\beta, x^\alpha z^\gamma)$,

where $0 < \alpha < a$, $0 < \beta < b$, and $0 < \gamma < c$.

$$T_d(x^a, y^b, z^c, x^\alpha y^\beta)$$

$$T_d(x^a, y^b, z^c, x^\alpha y^\beta, x^\alpha z^\gamma)$$
Type two algebras

Assume char $K = 0$.

Theorem

If R/I has type two, then R/I fails to have the WLP if and only if $I = (x^a, y^b, z^c, x^\alpha y^\beta, x^\alpha z^\gamma)$ and there exists an integer d such that

$$\max \left\{a, \alpha + \beta, \alpha + \gamma, \frac{a + \alpha + \beta + \gamma}{2} \right\} < d$$

$$< \min \left\{a + \beta + \gamma, \frac{\alpha + b + c}{2}, b + c, \alpha + c, \alpha + b \right\}.$$

Corollary (BMMNZ, 2012)

If R/I has type two and is level, then R/I has the WLP.
Type two algebras

Assume \(\text{char } K = 0 \).

Theorem

If \(R/I \) has type two, then \(R/I \) fails to have the WLP if and only if \(I = (x^a, y^b, z^c, x^\alpha y^\beta, x^\alpha z^\gamma) \) and there exists an integer \(d \) such that

\[
\max \left\{ a, \alpha + \beta, \alpha + \gamma, \frac{a + \alpha + \beta + \gamma}{2} \right\} < d
\]

\[
< \min \left\{ a + \beta + \gamma, \frac{\alpha + b + c}{2}, b + c, \alpha + c, \alpha + b \right\}.
\]

Corollary (BMMNZ, 2012)

If \(R/I \) has type two and is level, then \(R/I \) has the WLP.

New proof: \(R/I \) is level if and only if \(a - \alpha = b - \beta + c - \gamma \). Then

\[
\frac{a + \alpha + \beta + \gamma}{2} = \frac{2\alpha + b + c}{2} \geq \alpha + \min\{b, c\}.
\]
Proof of the Theorem (sketch)

Decompose $T_d(I)$:

$T_d(x^a, y^b, z^c, x^\alpha y^\beta, x^\alpha z^\gamma)$

$T^u = T_{d-\alpha}(x^{a-\alpha}, y^\beta, z^\gamma)$

$T^l = T_d(x^\alpha, y^b, z^c)$
Proof (sketch)

\[
\begin{array}{ccc}
\bigtriangleup & \text{Balanced} & \bigtriangledown \\
\hline \\
\bigtriangleup & 1 & 2 & 9 \\
\hline \\
\text{Balanced} & 3 & 4 & 5 \\
\hline \\
\bigtriangledown & 8 & 6 & 7 \\
\end{array}
\]
Cases 1 – 7:

$T^u = (x^4, y^4, z^5)$

$\# \triangle = 14$

$\# \square = 13$

$T^l = (x^3, y^8, z^8)$

$\# \triangle = 22$

$\# \square = 21$

$T_{10}(x^7, y^8, z^8, x^3 y^4, x^3 z^5)$
Cases 1 – 7:

\[T^u = (x^4, y^4, z^5) \]
\[\# \triangle = 13 \]

\[T^l = (x^3, y^8, z^8) \]
\[\# \triangle = 21 \]
Case 8:

$T_u = (x^5, y^5, z^6)$

$\# \nabla = 19$

$\# \triangle = 21$

$T_l = (x^3, y^8, z^8)$

$\# \nabla = 22$

$\# \triangle = 21$

$T_{10}(x^8, y^8, z^8, x^3 y^5, x^3 z^6)$
Case 8:

$T^u = (x^5, y^5, z^6)$

$\# \updownarrow = 19$

$\# \triangle = 20$

$T^l = (x^3, y^8, z^8)$

$\# \updownarrow = 22$

$\# \triangle = 21$

$T_{10}(x^8, y^8, z^8, x^3 y^5, x^3 z^6)$
Case 8:

\[T^u = (x^5, y^5, z^6) \]
\[\#\triangle = 19 \]

\[T^l = (x^3, y^8, z^8) \]
\[\#\triangle = 21 \]

\[T_{10}(x^8, y^8, z^8, x^3y^5, x^3z^6) \]
Proof (sketch)

Case 9:

$T^u = (x^4, y^4, z^5)$

$\#\nabla = 14$

$\#\triangle = 13$

$T^l = (x^3, y^9, z^9)$

$\#\nabla = 24$

$\#\triangle = 25$

$T_{10}(x^7, y^9, z^9, x^3 y^4, x^3 z^5)$
$X \subset \mathbb{P}^N = \mathbb{P}^N_K \; n$-dim proj. variety, $K = \overline{K}$, char $K = 0$

$P \in X$ a smooth point, φ a local parametrization around P

$T^{(s)}_P X = \mathbb{P}(\text{span of partial derivatives of } \varphi \text{ of order at most } s)$

s-th osculating space to X at P

Expected dimension is $\left(\binom{n+s}{s} \right) - 1$.

Togliatti, 1929, 1946
Perkinson, 2000
Mezzetti, Miró-Roig, Ottaviani, 2012
Di Genaro, Ilardi, Vallès, 2012
Laplace equations

$X \subset \mathbb{P}^N = \mathbb{P}_K^N$ n-dim proj. variety, $K = \overline{K}$, char $K = 0$

$P \in X$ a smooth point, φ a local parametrization around P

$T_P^{(s)} X = \mathbb{P}$(span of partial derivatives of φ of order at most s)

s-th osculating space to X at P

Expected dimension is $\binom{n+s}{s} - 1$.

Definition

X is said to satisfy δ Laplace equations of order s if, for a general point P of X,

$$\dim T_P^{(s)} X = \left(\binom{n+s}{s} \right) - 1 - \delta.$$

Interesting only if $N \geq \left(\binom{n+s}{s} \right) - 1$.

Togliatti, 1929, 1946
Perkinson, 2000
Mezzetti, Miró-Roig, Ottaviani, 2012
Di Genaro, Ilardi, Vallès, 2012
Laplace equations

\(I = (f_1, \ldots, f_r) \subset S = K[x_0, \ldots, x_n], \text{ where } \deg f_i = d \)

\(\varphi_I : \mathbb{P}^n \dashrightarrow \mathbb{P}^{r-1} \) induced rational map with image \(X_{n,[I]_d} \)
Laplace equations

\[I = (f_1, \ldots, f_r) \subset S = K[x_0, \ldots, x_n], \text{ where } \deg f_i = d \]

\[\varphi_I : \mathbb{P}^n \dashrightarrow \mathbb{P}^{r-1} \text{ induced rational map with image } X_{n,[I]_d} \]

Example (Togliatti)

Let \(n = 2, \quad J = (x^2y, x^2z, xy^2, xz^2, y^2z, yz^2) \). Then \(X_{2,[J]_3} \subset \mathbb{P}^5 \) is a toric surface satisfying one Laplace equation of order 2.
Laplace equations

\[I = (f_1, \ldots, f_r) \subset S = K[x_0, \ldots, x_n], \text{ where } \deg f_i = d \]

\[\varphi_I : \mathbb{P}^n \dashrightarrow \mathbb{P}^{r-1} \text{ induced rational map with image } X_{n,[I]_d} \]

Example (Togliatti)

Let \(n = 2, \ J = (x^2 y, x^2 z, xy^2, xz^2, y^2 z, yz^2) \). Then \(X_{2,[J]_3} \subset \mathbb{P}^5 \) is a toric surface satisfying one Laplace equation of order 2.

\(I^{-1} \) inverse system of \(I \)

\[\varphi_{I^{-1}} : \mathbb{P}^n \dashrightarrow \mathbb{P}^{\binom{n+d}{n}-r-1} \text{ induced rational map with image } X_{n,[I^{-1}]_d} \]
Laplace equations

\(I = (f_1, \ldots, f_r) \subset S = K[x_0, \ldots, x_n], \) where \(\deg f_i = d \)

\(\varphi_I : \mathbb{P}^n \to \mathbb{P}^{r-1} \) induced rational map with image \(X_{n,[I]_d} \)

Example (Togliatti)

Let \(n = 2, \quad J = (x^2y, x^2z, xy^2, xz^2, y^2z, yz^2) \). Then \(X_{2,[J]_3} \subset \mathbb{P}^5 \) is a
toric surface satisfying one Laplace equation of order 2.

\(I^{-1} \) inverse system of \(I \)

\(\varphi_{I^{-1}} : \mathbb{P}^n \to \mathbb{P}^{(n+d)/n-1} \) induced rational map with image \(X_{n,[I^{-1}]_d} \)

Remark

(i) If \(I \subset S \) is an artinian monomial ideal, then \(I^{-1} \) is generated by
monomials in \(S \setminus I \).
(ii) \(\dim_K [I^{-1}]_d = \dim_K [S/I]_d \).
(iii) If \(I = (x^3, y^3, z^3, xyz) \), then \(I^{-1} = J \).
Laplace equations

Mezzetti, Miró-Roig, Ottaviani, 2012: connection to WLP

Theorem

$I \subset S$ artinian ideal with $r \leq \binom{n+d}{n}$ minimal generators of degree d, $\ell \in [S]_1$ general. TFAE:

(a) Multiplication map $[S/I]_{d-1} \xrightarrow{\ell} [S/I]_d$ has a δ-dim kernel.

(b) $X_{n,[I^{-1}]_d} = \varphi_{I^{-1}}(\mathbb{P}^n)$ satisfies δ Laplace equations of order $d - 1$.

If $\delta > 0$, then I is said to define a Togliatti system.
Laplace equations

Mezzetti, Miró-Roig, Ottaviani, 2012: connection to WLP

Theorem

$I \subset S$ artinian ideal with $r \leq \binom{n+d}{n}$ minimal generators of degree d, $\ell \in [S]_1$ general. TFAE:

(a) Multiplication map $[S/I]_{d-1} \xrightarrow{\ell} [S/I]_d$ has a δ-dim kernel.

(b) $X_{n,[l^{-1}]_d} = \varphi_{l^{-1}}(\mathbb{P}^n)$ satisfies δ Laplace equations of order $d - 1$.

If $\delta > 0$, then I is said to define a **Togliatti system**.

Assume $n = 2$, $I \subset R = K[x, y, z]$ monomial.

Example

Togliatti systems with few generators:

(i) (Franco, Ilardi, 2002; Vallès, 2006) 4 generators:

$$I = (x^3, y^3, z^3, xyz).$$

(ii) 5 generators: $I = (x^4, y^4, z^4, x^2yz, y^2z^2)$ or

$$I = (x^d, y^d, z^d, x^{d-1}y, x^{d-1}z).$$
Proposition

Let $U \subset T_{d+1}(I)$ be a tileable monomial subregion such that $\det Z(U) \neq 0$. Let J be a monomial ideal such that $T \setminus U = T_{d+1}(J)$.

Then $[R/I]_{d-1} \xrightarrow{x+y+z} [R/I]_d$ and $[R/J]_{d-1} \xrightarrow{x+y+z} [R/J]_d$ fail to have maximal rank by the same margin.
Proposition

Let $U \subset T_{d+1}(I)$ be a tileable monomial subregion such that $\det Z(U) \neq 0$. Let J be a monomial ideal such that $T \setminus U = T_{d+1}(J)$.

Then $[R/I]_{d-1} \xrightarrow{x+y+z} [R/I]_d$ and $[R/J]_{d-1} \xrightarrow{x+y+z} [R/J]_d$ fail to have maximal rank by the same margin.

Example

Togliatti systems obtained from $T_6(x^5, y^5, z^5, xyz)$.

(x^5, y^5, z^5, xyz^3, xy^3z, x^3yz) (x^5, y^5, z^5, xy^2z^2, x^2yz^2, x^2y^2z)
Proposition

Assume, \([R/I]_{d-1} \xrightarrow{x+y+z} [R/I]_d\) is not injective although it is expected
\((\dim_K [R/I]_{d-1} \leq \dim_K [R/I]_d)\), \(T = T_{d+1}(I)\) has no overlapping
punctures, and \(x^d, y^d, z^d \in I\).

For each puncture, in each row fill in all triangles, but one \(\triangle\)-triangle. Call the result \(T'\), and let \(J\) be the smallest ideal such that
\(T' = T_{d+1}(J)\). Then \(J\) defines a Togliatti system.
Theorem

Let j be an integer such that $1 \leq j \leq \frac{d-1}{4}$ and

$$I_j = (y^d) + z^{4j+1}(y, z)^{d-1-4j} + (x^3, y^3, z^3, xyz) \cdot x^{d+1-4j} \cdot (x^4, y^4)^{j-1}.$$

Then:

(a) $[R/I_j]_{k-1} \xrightarrow{x+y+z} [R/I]_k$ has maximal rank for all $k \neq d$.

(b) $Z_{d+1}(I_j)$ is balanced.

(c) $X_{n,[(I_j)^{-1}]}_d$ satisfies exactly j Laplace equations of order $d - 1$.
Laplace equations

Example

$T_{14}(I_2)$