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Notation

K is a field,
R is a standard graded K-algebra,

R=S/Iwhere S=K][Xj,...,Xy] is a standard graded
polynomial ring and / = @, [; C S'is a graded ideal,

mp the maximal graded ideal of R,

M is always a finitely generated graded R-module with
graded Betti numbers

BR (M) = dimy Torf (M, K);
and total Betti numbers

(M) =Y B (M).

JeZ
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Koszul algebras

Definition
R is called Koszul if K has linear free resolution (as an
R-module), i.e. Bff(K) =0 for i # .

e So R is Koszul if and only if the minimal graded free
resolution of K is of the form:

e For example, if R is Koszul, then its defining ideal / is
generated by quadrics. But the converse does not hold.
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Finite projective dimension

To see the importance of Koszul algebras, recall the following
famous result. At first let

pda(M) = sup{i € N : BF(M) # 0}

be the projective dimension of a f. g. graded R-module M.
Then:
Theorem (Auslander-Buchsbaum-Serre)
The following statements are equivalent:
(i) Risregular, i.e. R is a standard graded polynomial ring;
(i) pdg(M) < = for every f.g. graded R-module M;
(iii) pdg(K) < eo.

Tim Rémer Absolutely Koszul algebras



Finite regularity

Let
regp(M) = sup{j—i: Bfi(M) # 0}

be the Castelnuovo-Mumford regularity of a f. g. graded
R-module M. Then:

Theorem (Avramov-Eisenbud-Peeva)

The following statements are equivalent:

(i) R is Koszul;

(i) regr(M) < = for every f.g. graded R-module M;
(iii) reggp(K) < co.
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Questions

e Usually it is rather difficult to prove that a given algebra is
Koszul, if there is no additional information available.

e ltis an interesting problem to find and study special
classes of Koszul algebras (e. g. G-quadratic algebras).

¢ Then one would like to decide whether an algebra belongs
to such a special class, or how algebra operations behave
within in this class.

e It is not totally obvious in which way Koszulness can be
defined for a noetherian local ring, but interesting to do so.
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The linear part of a minimal free resolution

We recall the following construction/definition due to Herzog
and lyengar ('05). Let

F: oo F—- 5 F—>F—0

be the minimal graded free resolution of a f.g. graded module
M. The (standard) filtration of F is given by the subcomplexes

FI(F) with Z/(F); =m/~'F; where w/ = Rfor j < 0,/.e.

FI(F): o= Fiq = Fj—m!F_ — s TR s w0,

The associated graded complex lin(F) is called the linear part
of F. This is a complex of gr,,,(R)-modules with

lin;(F) = gra(Fi)(=1)-
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The linear part of a minimal free resolution

¢ Note that this construction and its consequences are also
possible for local rings.

¢ In this talk we restrict ourself to the situation of a standard
graded algebra R as considered above.

¢ Since here R =gr,,(R) the complex lin(F) can be
described in an easy way:
Just replace all entries in the matrices of the complex
representing the homomorphisms of degree > 1 by 0.

Definition

We call
l[dg(M) = sup{i € N: H;(lin(F)) #0}

the linearity defect of M.
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The exterior algebra case

e The study of ldg(M) was in particular motivated by results
of Eisenbud, Flgystad and Schreyer ('03) about graded
modules over the exterior algebra. For example:

e Let E=K(eyq,...,en) be a standard graded exterior
algebra over K. Analogously one can define Idg(M) for a
f.g. graded E-module M. Then

|dE(M) < oo

e But be careful! There is no global bound on Idg(M).

¢ An analogous “commutative” algebra result for complete
intersections was proved by Herzog and lyengar.
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Exterior face rings

e Let A be a non-trivial simplicial complex on {1,...,n}.
Analogous to a Stanley-Reisner ring one can define the
exterior face ring K{A} = E/Ja. A result of Herzog-R
shows that

lde(K{A}) <n-1.

e This was improved by Okazaki and Yanagawa ('07) who
showed that the bound can be improved by 1 (for n > 4)
and they also characterized when we have equality.

e Let A* be the Alexander dual of A. Examples show that
lde(K{A})+1de(Ja)

is rather small compared to the trivial bound induced from
above. An interesting question is what is here an optimal
bound.
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ldg(M) =0

Back to the case of a standard graded algebra R. We have the
following characterization for the case lIdg(M) = 0.
Theorem (Herzog-lyengar, Sega, R)
The following statements are equivalent:
(i) ldr(M)=0;
(i) lin(F) is the minimal graded free resolution of gr,,(M).
If R is Koszul, then (i) and (ii) are equivalent to
(iiiy M is componentwise linear.

Note that the equivalence of (i) and (ii) also holds in the local
setting. For (iii) recall that M is componentwise linear iff

M,qy has a d-linear resolution for all d.

Here M4 is the submodule of M generated by M,.
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|dR(M) < oo

If Idr(M) < <, then we know the following (He-ly’05):
e regp(M) < o,
e The Poincaré series

PRIt =Y BF(m)t

of M is rational and the denominator depends only (on the
Hilbert series) of R.
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Koszul algebras

Combining the results of Herzog-lyengar and
Avramov-Eisenbud-Peeva one gets:

Theorem

The following statements are equivalent:
(i) R is Koszul;

(i) [dr(K)=0;

(iii) Idg(K) < oo.

Be careful. There exists Koszul algebras (Roos '05) where
ldg(M) = = for some M

with non-rational Poincaré series. In the local case it is an
interesting question whether ldg(K) < o implies Idg(K) = 0.
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Absolutely Koszul algebras

We saw that even Koszul algebras may fail the property that
l[dg(M) < < for all M. This is one motivation for:

Definition
We say that R is absolutely Koszul if

Idg(M) <  for all f.g. graded R-modules M.

We see immediately from above:

Corollary
If R is absolutely Koszul, then R is Koszul.
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Questions

¢ Which classes of algebras are absolutely Koszul?
¢ Relate this property to other “Koszul” properties.

e What is the behavior of the property “absolutely Koszul”
with respect to standard operations in algebra?
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Classes of absolutely Koszul algebras |

Theorem (Herzog-lyengar '05)

If R= S/l is either
e a complete intersection of quadrics, or
e regg(R) =1,

then R is absolutely Koszul.
In the second case we have

gl Id(R) = sup{ldg(M)} < oo.

In the first case gl Id(R) is finite if and only if R is a
hypersurface.

Certain artinian Gorenstein algebras with short Hilbert-function
are also known to be absolutely Koszul by recent results of
Henriques and Sega ('11). But very little is known beside this.
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Classes of absolutely Koszul algebras |l

In some cases we can say a little bit more:

Theorem (Conca-lyengar-Nguyen-R)

Let | C S be a squarefree monomial ideal with a 2-linear
resolution. Let L C S be a quadratic monomial c.i. such that |
does not contain any minimal generator of L. Then S/(I+L) is
an absolutely Koszul algebra.

Sketch of the proof.
The key step of the proof is to show that

regs, S/(I+L) <regsS/I=1.

Hence (/+ L)/L has an 2-linear resolution over the complete
intersection S/L. This implies that S/L — S/(/+ L) is Golod
and S/(/+ L) is Koszul (He-ly '05). This concludes the proof by
another result of Herzog-lyengar ('05). Ol
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Absolutely- and universally Koszul algebras |

The last result can be used in the following situation. Recall the
following definition of Conca ('00):

Definition

R is called universally Koszul, if every ideal generated by linear
forms has a linear resolution over R.

Universally Koszul algebras are very special. So one could
hope that there is a relationship to absolutely Koszul algebras.
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Absolutely- and universally Koszul algebras Il

Theorem (Conca-lyengar-Nguyen-R)
Let R be a universally Koszul algebra defined by quadratic
monomials. Then R is absolutely Koszul.

Sketch of the proof.

The key fact is that Conca ('02) classified monomial universally
Koszul algebras. From

KXt oo Xl / (X, o, Xim—1)2 + X3)

they are all obtained by taking polynomial extensions and fiber
products and by one more operation (in char(K)=2). Now one
can conclude the proof by checking that we can write the
defining ideal in each step as /+ L where L is a complete
intersection of squares and / is a squarefree monomial ideal
with 2-linear resolution as needed above. O
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Absolutely- and universally Koszul algebras I

The last result indicates that the following might be true.

Question: Is it always true that an universally Koszul algebra is
absolutely Koszul?
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Tensor products

The property “absolutely Koszul” is not well behaved with
respect to all operations in algebra as the following example
shows:

Let
R=KI[X,Y]/(X,Y)2.

Then R is absolutely Koszul. But the tensor product R @, R
appears in the list of bad Koszul algebras of Roos ('05). So
tensor products in general do not respect absolutely
Koszulness.
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Other algebra operations

But we have:
Theorem (Conca-lyengar-Nguyen-R)
Let R and T be standard graded K-algebras. Then:

(i) The fiber product R xk T is absolutely Koszul if and only if
R and T are absolutely Koszul.

(i) A polynomial ring extension R[X] is absolutely Koszul if
and only if R is absolutely Koszul.
(iii) If there exists a surjective homomorphism of rings R — T

such that pdg(T) < e and T is absolutely Koszul, then also
R is absolutely Koszul.
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Veronese subalgebras

Question: Let R be absolutely Koszul and d > 1. Is the
Veronese subring R(?) absolutely Koszul ?

We have only answers in special cases. For example, for d =2
and n < 6 this question has a positive answer. This proof is
already complicated, but the method does not work for larger n.

The same question might be asked for example, for Segre
products.
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Bounds for gl Id(R)

o We saw that sometimes gl Id(R) = o even if [dg(K) < .

¢ glld(R) < « should be rather restrictive. For example, if R
is Gorenstein, then this can only happen, if R is a
hypersurface (He-ly '05).

¢ A lower bound is given by

gl Id(R) > ldg(M) + depth(M)

for any finitely generated graded R-module M. Choosing
M = R yields

gl Id(R) > depth(R)
We expect that dim(R) is also a lower bound which we can
prove in the monomial situation.

¢ At least for polynomial ring extensions we can prove
gl ld(R[X]) =gl ld(R)+1.
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Summary

o Absolutely Koszul algebras are interesting to study and
there are many open problems to consider also in the
context of rings defined by monomial ideals.

e These algebras and more generally, the invariant “Id” are a

good way to consider the Koszul property for noetherian
local rings.
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