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Notation

• K is a field,
• R is a standard graded K -algebra,
• R = S/I where S = K [X1, . . . ,Xn] is a standard graded

polynomial ring and I =
⊕

i≥2 Ii ⊂ S is a graded ideal,
• mR the maximal graded ideal of R,
• M is always a finitely generated graded R-module with

graded Betti numbers

β
R
ij (M) = dimK TorR

i (M,K )j

and total Betti numbers

β
R
i (M) = ∑

j∈Z
β

R
ij (M).
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Koszul algebras

Definition
R is called Koszul if K has linear free resolution (as an
R-module), i. e. β R

ij (K ) = 0 for i 6= j .

• So R is Koszul if and only if the minimal graded free
resolution of K is of the form:

· · · → R(−i)β R
i (K )→ ·· · → R(−1)β R

1 (K )→ R→ K → 0

• For example, if R is Koszul, then its defining ideal I is
generated by quadrics. But the converse does not hold.
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Finite projective dimension

To see the importance of Koszul algebras, recall the following
famous result. At first let

pdR(M) = sup{i ∈ N : β
R
i (M) 6= 0}

be the projective dimension of a f. g. graded R-module M.
Then:

Theorem (Auslander-Buchsbaum-Serre)
The following statements are equivalent:

(i) R is regular, i. e. R is a standard graded polynomial ring;
(ii) pdR(M) < ∞ for every f.g. graded R-module M;
(iii) pdR(K ) < ∞.
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Finite regularity

Let
regR(M) = sup{j− i : β

R
i j(M) 6= 0}

be the Castelnuovo-Mumford regularity of a f. g. graded
R-module M. Then:

Theorem (Avramov-Eisenbud-Peeva)
The following statements are equivalent:

(i) R is Koszul;
(ii) regR(M) < ∞ for every f.g. graded R-module M;
(iii) regR(K ) < ∞.
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Questions

• Usually it is rather difficult to prove that a given algebra is
Koszul, if there is no additional information available.

• It is an interesting problem to find and study special
classes of Koszul algebras (e. g. G-quadratic algebras).

• Then one would like to decide whether an algebra belongs
to such a special class, or how algebra operations behave
within in this class.

• It is not totally obvious in which way Koszulness can be
defined for a noetherian local ring, but interesting to do so.
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The linear part of a minimal free resolution

We recall the following construction/definition due to Herzog
and Iyengar (’05). Let

F : · · · → Fi → ··· → F1→ F0→ 0

be the minimal graded free resolution of a f.g. graded module
M. The (standard) filtration of F is given by the subcomplexes

F j(F ) with F j(F )i = mj−iFi where mj = R for j ≤ 0, i .e.

F j(F ) : · · · → Fj+1→ Fj →m1Fj−1→ ·· · →mj−1F1→mjF0→ 0.

The associated graded complex lin(F ) is called the linear part
of F . This is a complex of grm(R)-modules with

lini(F ) = grm(Fi)(−i).

Tim Römer Absolutely Koszul algebras



The linear part of a minimal free resolution

• Note that this construction and its consequences are also
possible for local rings.

• In this talk we restrict ourself to the situation of a standard
graded algebra R as considered above.

• Since here R = grm(R) the complex lin(F ) can be
described in an easy way:
Just replace all entries in the matrices of the complex
representing the homomorphisms of degree > 1 by 0.

Definition
We call

ldR(M) = sup{i ∈ N : Hi(lin(F )) 6= 0}

the linearity defect of M.
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The exterior algebra case

• The study of ldR(M) was in particular motivated by results
of Eisenbud, Fløystad and Schreyer (’03) about graded
modules over the exterior algebra. For example:

• Let E = K 〈e1, . . . ,en〉 be a standard graded exterior
algebra over K . Analogously one can define ldE (M) for a
f.g. graded E-module M. Then

ldE (M) < ∞

• But be careful! There is no global bound on ldE (M).

• An analogous “commutative” algebra result for complete
intersections was proved by Herzog and Iyengar.
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Exterior face rings

• Let ∆ be a non-trivial simplicial complex on {1, . . . ,n}.
Analogous to a Stanley-Reisner ring one can define the
exterior face ring K{∆}= E/J∆. A result of Herzog-R
shows that

ldE (K{∆})≤ n−1.

• This was improved by Okazaki and Yanagawa (’07) who
showed that the bound can be improved by 1 (for n ≥ 4)
and they also characterized when we have equality.

• Let ∆∗ be the Alexander dual of ∆. Examples show that

ldE (K{∆}) + ldE (J∆∗)

is rather small compared to the trivial bound induced from
above. An interesting question is what is here an optimal
bound.
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ldR(M) = 0

Back to the case of a standard graded algebra R. We have the
following characterization for the case ldR(M) = 0.

Theorem (Herzog-Iyengar, Şega, R)
The following statements are equivalent:

(i) ldR(M) = 0;
(ii) lin(F ) is the minimal graded free resolution of grm(M).

If R is Koszul, then (i) and (ii) are equivalent to
(iii) M is componentwise linear.

Note that the equivalence of (i) and (ii) also holds in the local
setting. For (iii) recall that M is componentwise linear iff

M〈d〉 has a d-linear resolution for all d .

Here M〈d〉 is the submodule of M generated by Md .
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ldR(M)< ∞

If ldR(M) < ∞, then we know the following (He-Iy’05):

• regR(M) < ∞,

• The Poincaré series

PR
M(t) = ∑

i
β

R
i (M)t i

of M is rational and the denominator depends only (on the
Hilbert series) of R.
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Koszul algebras

Combining the results of Herzog-Iyengar and
Avramov-Eisenbud-Peeva one gets:

Theorem
The following statements are equivalent:

(i) R is Koszul;
(ii) ldR(K ) = 0;
(iii) ldR(K ) < ∞.

Be careful. There exists Koszul algebras (Roos ’05) where

ldR(M) = ∞ for some M

with non-rational Poincaré series. In the local case it is an
interesting question whether ldR(K ) < ∞ implies ldR(K ) = 0.
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Absolutely Koszul algebras

We saw that even Koszul algebras may fail the property that
ldR(M) < ∞ for all M. This is one motivation for:

Definition
We say that R is absolutely Koszul if

ldR(M) < ∞ for all f.g. graded R-modules M.

We see immediately from above:

Corollary
If R is absolutely Koszul, then R is Koszul.
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Questions

• Which classes of algebras are absolutely Koszul?

• Relate this property to other “Koszul” properties.

• What is the behavior of the property “absolutely Koszul”
with respect to standard operations in algebra?
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Classes of absolutely Koszul algebras I

Theorem (Herzog-Iyengar ’05)

If R = S/I is either
• a complete intersection of quadrics, or
• regS(R) = 1,

then R is absolutely Koszul.
In the second case we have

gl ld(R) = sup{ldR(M)}< ∞.

In the first case gl ld(R) is finite if and only if R is a
hypersurface.

Certain artinian Gorenstein algebras with short Hilbert-function
are also known to be absolutely Koszul by recent results of
Henriques and Şega (’11). But very little is known beside this.
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Classes of absolutely Koszul algebras II

In some cases we can say a little bit more:

Theorem (Conca-Iyengar-Nguyen-R)

Let I ⊂ S be a squarefree monomial ideal with a 2-linear
resolution. Let L⊂ S be a quadratic monomial c.i. such that I
does not contain any minimal generator of L. Then S/(I + L) is
an absolutely Koszul algebra.

Sketch of the proof.
The key step of the proof is to show that

regS/L S/(I + L)≤ regS S/I = 1.

Hence (I + L)/L has an 2-linear resolution over the complete
intersection S/L. This implies that S/L→ S/(I + L) is Golod
and S/(I + L) is Koszul (He-Iy ’05). This concludes the proof by
another result of Herzog-Iyengar (’05).
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Absolutely- and universally Koszul algebras I

The last result can be used in the following situation. Recall the
following definition of Conca (’00):

Definition
R is called universally Koszul, if every ideal generated by linear
forms has a linear resolution over R.

Universally Koszul algebras are very special. So one could
hope that there is a relationship to absolutely Koszul algebras.
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Absolutely- and universally Koszul algebras II

Theorem (Conca-Iyengar-Nguyen-R)
Let R be a universally Koszul algebra defined by quadratic
monomials. Then R is absolutely Koszul.

Sketch of the proof.
The key fact is that Conca (’02) classified monomial universally
Koszul algebras. From

K [X1, . . . ,Xm]/
(
(X1, . . . ,Xm−1)2 + X 2

m
)

they are all obtained by taking polynomial extensions and fiber
products and by one more operation (in char(K )=2). Now one
can conclude the proof by checking that we can write the
defining ideal in each step as I + L where L is a complete
intersection of squares and I is a squarefree monomial ideal
with 2-linear resolution as needed above.
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Absolutely- and universally Koszul algebras III

The last result indicates that the following might be true.

Question: Is it always true that an universally Koszul algebra is
absolutely Koszul?
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Tensor products

The property “absolutely Koszul” is not well behaved with
respect to all operations in algebra as the following example
shows:

Let
R = K [X ,Y ]/(X ,Y )2.

Then R is absolutely Koszul. But the tensor product R⊗k R
appears in the list of bad Koszul algebras of Roos (’05). So
tensor products in general do not respect absolutely
Koszulness.
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Other algebra operations

But we have:

Theorem (Conca-Iyengar-Nguyen-R)
Let R and T be standard graded K -algebras. Then:

(i) The fiber product R×K T is absolutely Koszul if and only if
R and T are absolutely Koszul.

(ii) A polynomial ring extension R[X ] is absolutely Koszul if
and only if R is absolutely Koszul.

(iii) If there exists a surjective homomorphism of rings R→ T
such that pdR(T ) < ∞ and T is absolutely Koszul, then also
R is absolutely Koszul.
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Veronese subalgebras

Question: Let R be absolutely Koszul and d ≥ 1. Is the
Veronese subring R(d) absolutely Koszul ?

We have only answers in special cases. For example, for d = 2
and n ≤ 6 this question has a positive answer. This proof is
already complicated, but the method does not work for larger n.

The same question might be asked for example, for Segre
products.
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Bounds for gl ld(R)

• We saw that sometimes gl ld(R) = ∞ even if ldR(K ) < ∞.
• gl ld(R) < ∞ should be rather restrictive. For example, if R

is Gorenstein, then this can only happen, if R is a
hypersurface (He-Iy ’05).

• A lower bound is given by

gl ld(R)≥ ldR(M) + depth(M)

for any finitely generated graded R-module M. Choosing
M = R yields

gl ld(R)≥ depth(R)

We expect that dim(R) is also a lower bound which we can
prove in the monomial situation.

• At least for polynomial ring extensions we can prove

gl ld(R[X ]) = gl ld(R) + 1.
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Summary

• Absolutely Koszul algebras are interesting to study and
there are many open problems to consider also in the
context of rings defined by monomial ideals.

• These algebras and more generally, the invariant “ld” are a
good way to consider the Koszul property for noetherian
local rings.
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