Twent y Points in \mathbb{P}^3

David Eisenbud
University of California, Berkeley

Ideals $I, J \subset k[x_0, \ldots, x_n]$ are directly Gorenstein-linked if there is is a Gorenstein ideal $K \subset I \cap J$ such that $K : I = J$ and $K : J = I$. The equivalence relation—Gorenstein linkage—generated by such direct linkages turns out to be very useful for the studying curves in \mathbb{P}^3, but its significance is still not at all clear in codimension > 2. In 2001 Hartshorne proposed the problem of determining whether the ideal of a set of 20 general points in \mathbb{P}^3 is Gorenstein-linked to a complete intersection. In November, Hartshorne, Schreyer and I were able to determine the graph of all direct Gorenstein linkages between general sets of points in \mathbb{P}^3. Computer algebra, used in a somewhat novel way, plays an essential role in the proof. I will describe the background of the theory and explain some of the ideas of the proof.