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Lessons

1) On the definition of spaces with Ricci curvature bounded from
below

2) Analytic properties of RCD(K, N) spaces

3) Geometric properties of RCD(K, N) spaces



Quoting the first sentence of Cheng-Yau 75

‘Most of the problems in differential geometry can be
reduced to problems in differential equations on Riemannian
manifolds’



Few things to forget about

» Forget about Lipschitz functions

» Forget about charts

» Forget (for a second) about defining who tangent/cotangent
vectors are: focus on defining Vf - Vg for Sobolev f, g
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Distributional Laplacian
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Infinitesimally Hilbertian spaces and the object Vf- Vg

We say that (X, d, m) is infinitesimally Hilbertian if W'2(X) is Hilbert.
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Infinitesimally Hilbertian spaces and the object Vf- Vg

We say that (X, d, m) is infinitesimally Hilbertian if W'2(X) is Hilbert.

Let (X,d,m) be inf. Hilb. and f, g € S?(X).

We define Vi-Vg: X — Ras

|D(g + ef)[? — | Dg|?

2¢

Vf-Vg:= im:)

e>



Calculus rules

Thm. (G. '12. Ambrosio, G., Savaré "11) For (X,d, m) inf. Hilb. and
f,g € S2(X) we have

Cauchy-Schwarz ~ |Vf-Vg| < |Df||Dg| € L'(X, m)

Localty — Vf-Vg=Vf-Vg m-ae on{f=7fn{g=3g}
Linearity V(agfy +a1fi) - Vg = aoViy - Vg + a1 Vf - Vg
Chain rule Vipof)=¢' ofVf-Vg for ¢ Lipschitz
Leibniz rule V(i) -Vg= iV -Vg+ hLVfi-Vg.

Symmetry Vf.-Vg=Vg-Vf



Plan representing gradients: definition

For g € S?2 and m € £2(C([0, 1], X)) test plan it holds

w— [ 9() —g() 1/ 2 -1//t C 2
im / 5 am < 5 [ 1DgPGoya T 5 [ | el dsar



Plan representing gradients: definition

For g € S?2 and m € £2(C([0, 1], X)) test plan it holds

w— [ 9() —g() 1/ 2 -1//t C 2
im / 5 am < 5 [ 1DgPGoya T 5 [ | el dsar

We say that = represents Vg, provided it holds

; 9() —9(r0) 1/[) 2 im 1//t- 2
g ' vt 7 > N
|t|¢mo/ ; dm 5 |Dg| (vo)dﬂ-—i—ltleo 5t |, |¥s|© dsdm



Plan representing gradients: existence

Thm (G. '12. Ambrosio, G., Savaré '11. G., Kuwada, Ohta '10).
For g € S?(X) and o € 22(X) such that © < Cwm, a plan =
representing Vg and such that egy7 = p exists.



First order differentiation formula

Let f,g € S?(X), and 7 which represents Vg.



First order differentiation formula

Let f,g € S?(X), and 7 which represents Vg.

Then
|im/de:/w-Vg(%)dw

t10
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A property of GF of K-convex functions on R¢

Let E : RY — R be K-convex and ¢ — x; be such that

X{ = —VE(x).
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A property of GF of K-convex functions on R¢
Let E : RY — R be K-convex and ¢ — x; be such that

X{ = —VE(x).

Pick y € RY and notice that
—yP=x-(xt—y)=VE(x) - (y - x)

and for y; s := (1 — 8)Xx; + Sy we have

Gls-0EWts) = VE(x) - (y = x).

Hence 41 K
X~y < E(y) - E(x) = 5 lx— yP?



EVIk gradient flows

Def. On a metric space (Y,dy), we say that (x;) C Y is an EVI,-GF
of E: Y — [0,00] ifitis loc. abs. cont. and for every y € Y we have

d1 K
Egdz()ﬁ,}’) < E(Y)*E(Xt)*gdz(xn}’), ae.t>0



EVIk gradient flows

Def. On a metric space (Y,dy), we say that (x;) C Y is an EVI,-GF
of E: Y — [0,00] ifitis loc. abs. cont. and for every y € Y we have

d1 K
&Edz(x,,y) < E(Y)*E(Xt)*gdz(xn}’), ae.t>0

(Savaré) If (x;) is an EVIk gradient flows it satisfies
t
E(xo) = E(xt) + %/ X2 4 |0~ E(xs)ds, V>0
0

The viceversa is not true



The heat flow as EVIk gradient flow of the entropy

We want to prove that the heat flow is an EVI, gradient flow of the
entropy.
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The heat flow as EVIk gradient flow of the entropy

We want to prove that the heat flow is an EVI, gradient flow of the
entropy.

Thus let t — p; = psm be an heat flow and v = nm given.

We want to compute

d1

a2 WE(pt,v) and Enty, (v1,5)

d73 |s:0

where s — v 5 is @ geodesic joining yi; to v.



Derivative of 2 W2(us, v)

Fix fo a point of differentiability of t — JW2(u, ) and let ¢ be a
Kantorovich potential from p, to v.
Then

1
EWZZ(IU'to?V):/(pdp‘fo—’—/@ch

1

§W22(Nfo+hay) > /(pduto+h+/<pcdy

Recalling that 1; = pym we get

d 1 d
Et|t:t0§W§(Mt,V) = d*t|,:,0/%0dut:/<pApto dm
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Thm. (Regularity of interpolated densities Rajala '12)
Let (X,d, m) be a compact CD(K, ) space and u,v € Z(X) s.t.
v < Cm.
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Thm. (Regularity of interpolated densities Rajala '12)
Let (X,d, m) be a compact CD(K, ) space and u,v € Z(X) s.t.
v < Cm.

Then there exists a geodesic () such that u; < C'm for every
t €[0,1] and t — Enty, (1) is K-convex.

Thm. (Metric Brenier's theorem Ambrosio, G., Savaré '11) Let (u;) be
a geodesic such that y; < Cm for every t € [0,1], # € £(C([0, 1], X))
a lifting of it and ¢ a Kantorovich potential inducing it.

Then = represents the gradient of —.



Derivative of Ent,,(vs)

Let s — vs be a geodesic s.t. vs < Cm for every s and such that
vo = nm with n > ¢ > 0, n € Wh2(X).
Let ¢ be a Kantorovich potential inducing it.
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The heat flow is an EVIk gradient flow of the entropy

We conclude that
d1

d
— 5 WE(ut,v) < — | Entm(v,s)
dt2 ds

K
< Enty, (v) — Enty (1) — > W22(,u,7 v)



The heat flow is an EVIk gradient flow of the entropy

We conclude that

d1

d
— 5 WE(ut,v) < — | Entm(v,s)
dt2 ds

K
< Enty, (v) — Enty (1) — > W22(,u,7 v)

We deduce that for (u:), (v¢) € £(X) heat flows we have

WE (e, vt) < € 2" WE (o, vo)



Heat Kernel and Bronian motion

We deduce that there exists the heat flow t — u;[x] starting from
forany x € X.

General constructions related to the theory of Dirichlet forms then
grant existence and uniqueness of a Markov process X; with transition
probabilities p[x], i.e.:

]P)(XH»S S A‘Xt = X) = /J[[X](A)
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A duality result

Thm. (Kuwada '09)
Let H; : Z(X) — Z2(X) be the heat flow at level of measures and
hy: L' — L' the one for densities.



A duality result

Thm. (Kuwada '09)

Let H; : Z(X) — Z2(X) be the heat flow at level of measures and
hy: L' — L' the one for densities.

Then TFAE:

WE (Hi(p), Hi(v)) < @2 W (p,v),  Vt>0, pv e 2(X)
lip?(he(f)) < e #"hy(lip*(f)), vt >0, f: X — R Lipschitz

where

lip(f)(x) := fim W



Density in energy in W2 of Lipschitz functions

Thm. (Ambrosio, G., Savaré '11) Let (X,d, m) be a mms.



Density in energy in W2 of Lipschitz functions

Thm. (Ambrosio, G., Savaré '11) Let (X,d, m) be a mms. Then:

» for every (f,) C LIP(X)converging in L? to some f, we have
|Df| < G, where G is any L2-weak limit of (lip(f,))

» for every f € W'2(X) there exists (f,) C LIP(X) L2-converging to
f such that

|Df| = limlip(f,) the limit being intended strong in L2
n



Bochner inequality (N = o0)

(G., Kuwada, Ohta '10. Ambrosio, G., Savaré ’11)
Starting from

lip?(h(f)) < e hy(lip?(f)),  Vt >0, f € LIP(X)
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(G., Kuwada, Ohta '10. Ambrosio, G., Savaré ’11)
Starting from

lip?(h(f)) < e hy(lip?(f)),  Vt >0, f € LIP(X)
and by relaxation we deduce

|Dh(f)|2 < e~ 2Khy(IDFI?) vt >0, f e W"3(X)
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(G., Kuwada, Ohta '10. Ambrosio, G., Savaré ’11)
Starting from

lip?(h(f)) < e hy(lip?(f)),  Vt >0, f € LIP(X)
and by relaxation we deduce
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with g > 0 and Ag € L*=(X).



Bochner inequality (N = oo)

(G., Kuwada, Ohta '10. Ambrosio, G., Savaré '11)
Starting from

lip?(h(f)) < e hy(lip?(f)),  Vt >0, f € LIP(X)
and by relaxation we deduce
|Dhy(f)? < e~ 2Kth(|Df?) Vvt >0, fe W"3(X)

which gives
| Df|? 2
/Ag? dm > /(Vf~VAf+ K|Df|*)gdm

forevery f € W'2(X)ND(A) with Af € W'3(X)and g € L>=(X)ND(A)
with g > 0 and Ag € L*=(X).

Also the converse implication from Bochner to RCD(K, co) holds
(Ambrosio, G., Savaré '12)



Bochner inequality (N < o0)

(Erbar, Kuwada, Sturm '13) On an RCD(K, N) space we have

G Af
/Ag' 4 /(( N) +Vf-VAf 4 K|Df?) gdm

(see also (Ambrosio, Mondino, Savaré - in progress))



Related results

(Mondino, Garofalo '13) Li-Yau inequality: for f > 0 on RCD(0, N)
spaces we have

A(log(hf)) > 2ﬁt

(Kell *13, Jiang ’11, Koskela, Rajala, Shanmugalingam '03) Local
Lipschitz regularity of harmonic functions on RCD(K, N) spaces
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Optimal maps

Thm. (G., Rajala, Sturm ’13) Let (X,d,m) be RCD(K,N),
w,v € Z(X) with p < m.
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Optimal maps

Thm. (G., Rajala, Sturm ’13) Let (X,d,m) be RCD(K,N),
w,v € Z(X) with p < m.

Then:
» There is only one optimal plan

» Such planisinducedby amap T
» For u-a.e. x there is only one geodesic v* from x to T(x)

» For p-a.e. x # y we have v} # +! for every t € [0,1)

In particular the RCD(K, N) condition can be localized along
geodesics, and if u < Cm, then p; < C’'m for every t € [0, %]
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Distributional Laplacian

Let (X, d, m) be infinitesimally Hilbertian and locally compact, Q C X
open, g € S?(Q)



Distributional Laplacian

Let (X, d, m) be infinitesimally Hilbertian and locally compact, Q C X
open, g € S?(Q)

We say that g € D(A, Q) if there exists a Radon measure 1 on Q such
that
—/Vf-ngm:/fdu,
Q Q
holds for every f Lipschitz with supp(f) CC Q.

In this case we put Ag|Q = U



Calculus rules

Linearity
Ao gy + ae@e) = Agy + Age
Chain rule
A(pog)=¢' 0gAg+ ¢ og|DglPm
Leibniz rule

A(9192) = g1AG2 + G2Agr +2V gy - Vgom



Relations with nonlinear potential theory

Theorem (G. '12. G. Mondino ’12) Let (X, d, m) be inf. Hilb., with
doubling measure and supporting a 2-Poincaré inequality.
LetQ c X and g € S?(Q).



Relations with nonlinear potential theory

Theorem (G. '12. G. Mondino ’12) Let (X, d, m) be inf. Hilb., with
doubling measure and supporting a 2-Poincaré inequality.

LetQ c X and g € S?(Q).

Then TFAE:

» ge D(A,Q)and Ag <0
» For every Lipschitz f > 0 with supp(f) CcC Q we have

/|Dg|2dms/|D(g+f)|2dm
Q Q



Laplacian comparison

On a Riemannian manifold M with Ric > 0, dim < N it holds

A%dz(-,y) <N

in the sense of distributions.



Laplacian comparison

On a Riemannian manifold M with Ric > 0, dim < N it holds

Ale(x) <N
2
in the sense of distributions.

The same holds on RCD(0, N) spaces:
Thm (G. ’12) For (X,d, m) RCD(0, N) and X € X we have




Idea of the proof (1/2)

Pick f > 0 Lipschitz with compact support and let p := cf v
Lo 1= pm, w1 =y, t — p; the geodesic connecting them
The geodesic convexity of Uy gives

i Un () — Un(pio)
tJ0 t

< Un(ju1) — Un(uo) = ¢ / fdm



Idea of the proof (2/2)
Let w € Z2(C([0, 1], X)) be the lifting of (x;) and notice that

Un(jue) — Un(o) > / UN(p) d(sut — o)

_ / UN () () — U (p)(70) de ()



Idea of the proof (2/2)
Let w € Z2(C([0, 1], X)) be the lifting of (x;) and notice that

Un(jue) — Un(o) > / UN(p) d(sut — o)

_ / UN () () — U (p)(70) de ()

Notice that = represents the gradient of ¢ := —@ to get

i M=) [ (44 5) - T (o) am(2)
tl0

LI P
N/ FVedm




|dea of the proof (2/2)
Let w € Z2(C([0, 1], X)) be the lifting of (x;) and notice that

Un(jue) — Un(o) > / UN(p) d(sut — o)
- / UN(P) () — U (p)(20) d()

Notice that = represents the gradient of ¢ := —@ to get

IiﬂuN(M) — Un(po) > /V(u’
tio

(r)) - Vo (10)dm(v)

cl—w

/Vf -Veodm
Hence

——/Vf VLD 4m </fdm Vf > 0, Lip with cpt supp



Thank you



