Definition

A knot is a smooth embedding of the circle into 3-dimensional space.
Figure: A knot
Fact I: The mathematical study of knots includes several different branches, each with a very different "flavour": algebraic, geometric, ...
Fact I: The mathematical study of knots includes several different branches, each with a very different “flavour”: algebraic, geometric, ...

Fact II: Knots relate to nature, for instance via the tangles in long strands of DNA.
Definition

Given a knot K in 3-dimensional space, an orientable (2-sided) surface S that has boundary K is called a *spanning surface*.
Figure: A Seifert surface

Theorem

(Seifert) Every knot admits a spanning surface.
Seifert surfaces

Theorem

\((\text{Seifert})\) Every knot admits a spanning surface.
Theorem

(Seifert) Every knot admits a spanning surface.

Seifert’s algorithm

- Step 1: Consider a projection of the knot and give it an orientation.
- Step 2: Resolve each crossing to obtain Seifert circles.
Theorem

(Seifert) Every knot admits a spanning surface.

Seifert’s algorithm

- Step 1: Consider a projection of the knot and give it an orientation.
- Step 2: Resolve each crossing to obtain Seifert circles.
- Step 3: The Seifert circles bound disks with a natural orientation.
Seifert surfaces

Theorem

(Seifert) Every knot admits a spanning surface.

Seifert’s algorithm

- Step 1: Consider a projection of the knot and give it an orientation.
- Step 2: Resolve each crossing to obtain Seifert circles.
- Step 3: The Seifert circles bound disks with a natural orientation.
- Step 4: Connect disks via bands to obtain a spanning surface.
For a surface S constructed via Seifert’s algorithm, the Euler characteristic of S, denoted by $\chi(S)$, can be computed as

$$\chi(S) = \#\text{disks} - \#\text{bands}$$

Definition

A *Seifert surface* for a knot K is a spanning surface of maximal Euler characteristic.
Fact I: Many knots K in \mathbb{S}^3 admit non-isotopic Seifert surfaces. (Eisner 1977)
Fact I: Many knots K in S^3 admit non-isotopic Seifert surfaces. (Eisner 1977)

Fact II: Many knots K in S^3 admit disjoint non-isotopic Seifert surfaces. (Eisner 1977)
Figure: Connect sum of knots
Figure: Connect sum of knots
Seifert Surfaces

Figure: Schematic

Jennifer Schultens
Knots and surfaces in 3-dimensional space
Kakimizu complex

Definition

The vertices of the Kakimizu complex $\text{Kak}(K)$ of a knot K in \mathbb{S}^3 are given by the isotopy classes of minimal genus Seifert surfaces for K.
The vertices of the Kakimizu complex $Kak(K)$ of a knot K in \mathbb{S}^3 are given by the isotopy classes of minimal genus Seifert surfaces for K.

The n-simplices of the Kakimizu complex of K, for $n > 1$, are given by n-tuples of vertices that admit representatives that are pairwise disjoint.
Examples of Kakimizu complexes

- **Example I:** Fibered knots have trivial Kakimizu complexes.
Examples of Kakimizu complexes

- **Example I:** Fibered knots have trivial Kakimizu complexes.
- **Example II:** Hyperbolic knots have finite Kakimizu complexes.

Jennifer Schultens
Knots and surfaces in 3-dimensional space
Theorem

\textit{(Scharlemann-Thompson)} The Kakimizu complex of a knot is connected.

Not stated in these terms.
Theorem

(Kakimizu) Suppose that K_1, K_2 are knots with unique minimal genus Seifert surfaces (up to isotopy). Then the Kakimizu complex of $K = K_1 \# K_2$ is a bi-infinite ray.

More recently, Kakimizu computed the Kakimizu complexes for all prime knots with up to 10 crossings.
(Banks) Suppose that K_1, K_2 are knots, then the Kakimizu complex of $K_1 \# K_2$ is the product of three complexes: The Kakimizu complex of K_1, the Kakimizu complex of K_2 and the complex that has underlying space \mathbb{R} and vertices at the integers.
Structure of Kakimizu complexes

Theorem

(Banks) There exist knots with locally infinite Kakimizu complex.

Theorem

(Banks) A knot has locally infinite Kakimizu complex only if it is a satellite of either a torus knot, a cable knot or a connected sum, with winding number 0.
Figure: An essential torus in a knot complement
(S 2007) The Kakimizu complex of a knot K is a flag complex.
Structure of the Kakimizu complex

Theorem

(S 2007) The Kakimizu complex of a knot K is a flag complex.

Theorem

(Kapovich 2009) Let M be a Riemannian 3-manifold with smooth strictly convex boundary, together with a compact family \mathcal{J} of smooth curves on ∂M. Let $f_i : (S_i, \partial S_i) \rightarrow (M, \mathcal{J})$, $i = 1, \ldots, n$ be incompressible surfaces which are pairwise non-isotopic and pairwise disjoint. Let $g_i : (S_i, \partial S_i) \rightarrow (M, \mathcal{J})$, $i = 1, \ldots, n$ be relative area minimizers in the proper isotopy classes of f_i, $i = 1, \ldots, n$. Then $g_1(S_1), \ldots, g_n(S_n)$ are also pairwise disjoint.
The Kakimizu complex of a knot is contractible.

(Przytycki-S 2010) The Kakimizu complex of a knot is contractible.
Implicit in Kakimizu’s work is a projection map (coming from considerations involving covering spaces and Kakimizu’s formulation of the distance on the Kakimizu complex) that, given two vertices v, w, produces a vertex $\pi_v(w)$ that is one step closer to v than w.

\[d(v, \pi_v(w)) = d(v, w) - 1 \]
Theorem

(Przytycki-S 2010) The Kakimizu complex of a knot is contractible.

Idea of proof: Choose a vertex v in $Kak(K)$ and prove that the projection map onto v is a contraction of $Kak(K)$.

Challenge: Make sure that the projection map behaves well on links of vertices.
Theorem

(Scharlemann-Thompson) The Kakimizu complex of a knot is connected.

Idea of new proof: Given any two vertices v, w, we construct a path