NOTETAKER CHECKLIST FORM

(Complete one for each talk.)

Name: Sean Howe Email/Phone: sean.p.v.h@gmail.com
Speaker's Name: Dipendra Prasad
Talk Title: Branching laws and period integrals for non-tempered representations
Date: 12/03/2014 Time: 12:00 am / pm (circle one)
List 6-12 key words for the talk: Branching laws, non-tempered representations,
classical groups
Please summarize the lecture in 5 or fewer sentences: Explains some branching
laws for restriction of non-tempered automorphic representations
for classical groups, with many explicit examples and applications.

CHECK LIST

(This is NOT optional, we will not pay for incomplete forms)

☐ Introduce yourself to the speaker prior to the talk. Tell them that you will be the note taker, and that
you will need to make copies of their notes and materials, if any.

☐ Obtain ALL presentation materials from speaker. This can be done before the talk is to begin or after
the talk; please make arrangements with the speaker as to when you can do this. You may scan and
send materials as a .pdf to yourself using the scanner on the 3rd floor.
 • Computer Presentations: Obtain a copy of their presentation
 • Overhead: Obtain a copy or use the originals and scan them
 • Blackboard: Take blackboard notes in black or blue PEN. We will NOT accept notes in pencil
 or in colored ink other than black or blue.
 • Handouts: Obtain copies of and scan all handouts

☐ For each talk, all materials must be saved in a single .pdf and named according to the naming
convention on the “Materials Received” check list. To do this, compile all materials for a specific talk
into one stack with this completed sheet on top and insert face up into the tray on the top of the
scanner. Proceed to scan and email the file to yourself. Do this for the materials from each talk.

☐ When you have emailed all files to yourself, please save and re-name each file according to the naming
convention listed below the talk title on the “Materials Received” check list.
(YYYY.MM.DD.TIME.SpeakerLastName)

☐ Email the re-named files to notes@msri.org with the workshop name and your name in the subject
line.
Branching laws for non-tempered representations

Dipendra Prasad
Tata Institute of Fundamental Research

Automorphic forms, Shimura varieties, Galois representations, and L-functions

MSRI

December 03, 2014

(joint work with Wee Teck Gan and B. Gross)
Branching laws for compact unitary groups (from $U(n+1)$ to $U(n)$):

\[\lambda = \{ \lambda_1 \geq \cdots \geq \lambda_{n+1} \} \]

\[\pi_\lambda|_{U(n)} = \sum \pi_\mu, \]

where μ runs over

\[\lambda_1 \geq \mu_1 \geq \cdots \geq \lambda_n \geq \mu_n \geq \lambda_{n+1}. \]
Branching laws for compact unitary groups (from $U(n+1)$ to $U(n)$):

$$\lambda = \{\lambda_1 \geq \cdots \geq \lambda_{n+1}\}$$

$$\pi_{\lambda}|_{U(n)} = \sum \pi_{\mu},$$

where μ runs over

$$\lambda_1 \geq \mu_1 \geq \cdots \geq \lambda_n \geq \mu_n \geq \lambda_{n+1}.$$

Two features of this branching law may be noted.
Branching laws for compact unitary groups (from $U(n+1)$ to $U(n)$):

\[\lambda = \{ \lambda_1 \geq \cdots \geq \lambda_{n+1} \} \]

\[\pi_{\lambda}|_{U(n)} = \sum \pi_{\mu}, \]

where μ runs over

\[\lambda_1 \geq \mu_1 \geq \cdots \geq \lambda_n \geq \mu_n \geq \lambda_{n+1}. \]

Two features of this branching law may be noted.

1. Multiplicity one.
Branching laws for compact unitary groups (from $U(n+1)$ to $U(n)$):

$$\lambda = \{\lambda_1 \geq \cdots \geq \lambda_{n+1}\}$$

$$\pi_\lambda|_{U(n)} = \sum \pi_\mu,$$

where μ runs over

$$\lambda_1 \geq \mu_1 \geq \cdots \geq \lambda_n \geq \mu_n \geq \lambda_{n+1}.$$

Two features of this branching law may be noted.

1. Multiplicity one.
2. Explicit description depends on a parametrization of all irreducible representations, in this case by the theory of highest weights.
We are interested in similar branching laws for real and p-adic groups for representations which are typically infinite dimensional. I will concentrate mostly on the p-adic case where we will consider representations of a p-adic group on a vector space over \mathbb{C}, and the representations will be smooth.
We are interested in similar branching laws for real and \(p \)-adic groups for representations which are typically infinite dimensional. I will concentrate mostly on the \(p \)-adic case where we will consider representations of a \(p \)-adic group on a vector space over \(\mathbb{C} \), and the representations will be smooth.

Branching laws will be understood in the sense of

\[\text{Hom}_H(\pi_1, \pi_2) \neq 0. \]
We are interested in similar branching laws for real and p-adic groups for representations which are typically infinite dimensional. I will concentrate mostly on the p-adic case where we will consider representations of a p-adic group on a vector space over \mathbb{C}, and the representations will be smooth.

Branching laws will be understood in the sense of

$$\text{Hom}_H(\pi_1, \pi_2) \neq 0.$$

It may be remarked that a priori the space

$$\text{Hom}_H(\pi_1, \pi_2)$$

may be identically zero, or may be identically infinite dimensional!
Branching laws that we consider are for pairs of groups and subgroups which are:

- $GL_{n+1} \supseteq GL_n$
- $SO_{n+1} \supseteq SO_n$
- $U_{n+1} \supseteq U_n$

and some more which go under the name of Bessel subgroup, and Fourier-Jacobi subgroup, but these we will not discuss here.
One of the first theorems that one proves for all these branching laws is the following multiplicity one theorem.

Theorem (Aizenbud, Gurevitch, Rallis, Schiffmann)

For groups \((G, H)\) as above,

\[
\dim \text{Hom}_H(\pi_1, \pi_2) \leq 1,
\]

for irreducible admissible representations \(\pi_1\) of \(G\), and \(\pi_2\) of \(H\).

Given this theorem, the main question to understand is when

\[
\dim \text{Hom}_H(\pi_1, \pi_2) \neq 0.
\]
One of the first theorems that one proves for all these branching laws is the following multiplicity one theorem.

Theorem (Aizenbud, Gurevitch, Rallis, Schiffmann)

For groups \((G, H)\) as above,

\[
\dim \text{Hom}_H(\pi_1, \pi_2) \leq 1,
\]

for irreducible admissible representations \(\pi_1\) of \(G\), and \(\pi_2\) of \(H\).
One of the first theorems that one proves for all these branching laws is the following multiplicity one theorem.

Theorem (Aizenbud, Gurevitch, Rallis, Schiffmann)

For groups \((G, H)\) as above,

\[
\dim \text{Hom}_H(\pi_1, \pi_2) \leq 1,
\]

for irreducible admissible representations \(\pi_1\) of \(G\), and \(\pi_2\) of \(H\).

Given this theorem, the main question to understand is when

\[
\dim \text{Hom}_H(\pi_1, \pi_2) \neq 0.
\]
Introduction

Theorem

For π_1 an irreducible admissible generic representation of GL_{n+1}, and π_2 of GL_n, $\dim \text{Hom}(\pi_1, \pi_2) = 1$.

Dipendra Prasad

Tata Institute of Fundamental Research

Branching laws for non-tempered representations
Theorem (Waldspurger, Moeglin-Waldspurger, Beuzart-Plessis)

For pair of groups \((G, H)\) as above,

\[\sum_{\pi_1 \in \Pi_1(G)} \sum_{\pi_2 \in \Pi_2(H)} \dim \text{Hom}(\pi_1, \pi_2) \leq 1,\]

where the pairs \(H' \subseteq G'\) vary over all pure inner forms of a given pair \((G, H)\), and \(\Pi_1(G)\) (resp. \(\Pi_1(H)\)) denotes an \(L\)-packet of representations on \(G\) (resp. \(H\)) which contains a generic representation.
Theorem (Waldspurger, Moeglin-Waldspurger, Beuzart-Plessis)

For pair of groups \((G, H)\) as above,

\[
\sum_{\pi_1 \in \Pi_1(G), \pi_2 \in \Pi_2(H)} \dim \Hom(\pi_1, \pi_2) \leq 1.
\]
Theorem (Waldspurger, Moeglin-Waldspurger, Beuzart-Plessis)

For pair of groups \((G, H)\) as above,

1. \[
\sum_{\pi_1 \in \Pi_1(G), \pi_2 \in \Pi_2(H)} \dim \text{Hom}(\pi_1, \pi_2) \leq 1.
\]

2. \[
\sum_{H' \subseteq G'} \sum_{\pi_1 \in \Pi_1(G'), \pi_2 \in \Pi_2(H')} \dim \text{Hom}(\pi_1, \pi_2) = 1,
\]
Theorem (Waldspurger, Moeglin-Waldspurger, Beuzart-Plessis)

For pair of groups \((G, H)\) as above,

\[
\sum_{\pi_1 \in \Pi_1(G), \pi_2 \in \Pi_2(H)} \dim \text{Hom}(\pi_1, \pi_2) \leq 1.
\]

\[
\sum_{H' \subseteq G'} \sum_{\pi_1 \in \Pi_1(G'), \pi_2 \in \Pi_2(H')} \dim \text{Hom}(\pi_1, \pi_2) = 1,
\]

where the pairs \(H' \subseteq G'\) vary over all pure inner forms of a given pair \((G, H)\), and \(\Pi_1(G)\) (resp. \(\Pi_1(H)\)) denotes an \(L\)-packet of representations on \(G\) (resp. \(H\)) which contains a generic representation.
For example for unitary groups over reals, we have the pairs:

\[U(n, 0) \leftrightarrow U(n + 1, 0) \]
\[U(n - 1, 1) \leftrightarrow U(n, 1) \]
\[\vdots \]
\[U(0, n) \leftrightarrow U(1, n) \]
For a reductive algebraic group G over a local field, if $\Pi(G)$ denotes the set of isomorphism classes of representations of G, and $\Sigma(G)$ denotes the set of equivalence classes of (admissible) parameters for G, then there is a surjective map with finite fibers:

$$\Pi(G) \rightarrow \Sigma(G),$$
For a reductive algebraic group G over a local field, if $\Pi(G)$ denotes the set of isomorphism classes of representations of G, and $\Sigma(G)$ denotes the set of equivalence classes of (admissible) parameters for G, then there is a surjective map with finite fibers:

$$\Pi(G) \rightarrow \Sigma(G),$$

whose fibers are called the L-packet of representations on G.

Dipendra Prasad Tata Institute of Fundamental Research

Branching laws for non-tempered representations
For a reductive algebraic group G over a local field, if $\Pi(G)$ denotes the set of isomorphism classes of representations of G, and $\Sigma(G)$ denotes the set of equivalence classes of (admissible) parameters for G, then there is a surjective map with finite fibers:

$$\Pi(G) \to \Sigma(G),$$

whose fibers are called the L-packet of representations on G.

Representations of pure inner forms of G with a given parameter φ are in bijective correspondence with \hat{S}_φ, where S_φ denotes the group of connected components of the centralizer of the parameter φ.
The component groups in the cases being considered are elementary abelian 2 groups, i.e., $\mathbb{Z}/2^d$, explicitly parametrized by irreducible self-dual summands of the correct parity in the representation

$$\varphi : W'_k \rightarrow ^L G \rightarrow GL_n(\mathbb{C}).$$
The component groups in the cases being considered are elementary abelian 2 groups, i.e., $(\mathbb{Z}/2)^d$, explicitly parametrized by irreducible self-dual summands of the correct parity in the representation
\[
\varphi : W'_k \rightarrow L G \rightarrow GL_n(\mathbb{C}).
\]

The distinguished member \((\pi_{1,0}, \pi_{2,0})\) with
\[
\dim \text{Hom}_H(\pi_{1,0}, \pi_{2,0}) = 1,
\]
corresponds to the character on the component group (which is essentially)
The component groups in the cases being considered are elementary abelian 2 groups, i.e., \((\mathbb{Z}/2)^d\), explicitly parametrized by irreducible self-dual summands of the correct parity in the representation

\[\varphi : W'_k \to L G \to GL_n(\mathbb{C}). \]

The distinguished member \((\pi_{1,0}, \pi_{2,0})\) with

\[\dim \text{Hom}_H(\pi_{1,0}, \pi_{2,0}) = 1, \]

corresponds to the character on the component group (which is essentially)

\[S_{\varphi_1} \times S_{\varphi_2} \to \mathbb{Z}/2 \]

\[\varphi_{1,i} \to \varepsilon(\varphi_{1,i} \otimes \varphi_2) \]

\[\varphi_{2,i} \to \varepsilon(\varphi_1 \otimes \varphi_{2,i}). \]
Example 1 (Harder, Langlands, Rapoport):

Let K be a quadratic extension of a number field k, π a cuspidal automorphic representation of $GL_2(\mathbb{A}_K)$ with trivial central character on \mathbb{A}_k^\times. Then,

$$\int_{\mathbb{A}_k^\times \, GL_2(k) \backslash GL_2(\mathbb{A}_k)} f(h) dh \not\equiv 0$$
Example 1 (Harder, Langlands, Rapoport):

Let \(K \) be a quadratic extension of a number field \(k \), \(\pi \) a cuspidal automorphic representation of \(GL_2(\mathbb{A}_K) \) with trivial central character on \(\mathbb{A}_k^\times \). Then,

\[
\int_{\mathbb{A}_k^\times \ GL_2(k) \backslash GL_2(\mathbb{A}_k)} f(h)dh \neq 0
\]

if and only if \(L(s, \text{As } \pi) \) has a pole at \(s = 1 \).
Example 2 (Gelbart, PS, Rogawski): \(U(1, 1) \hookrightarrow U(2, 1) \).

\[
\int_{U(1,1)(k) \backslash U(1,1)(\mathbb{A}_k)} f(h)dh \not\equiv 0
\]

if and only if
Example 2 (Gelbart, PS, Rogawski): $U(1, 1) \hookrightarrow U(2, 1)$.

$$\int_{U(1,1)(k) \backslash U(1,1)(\mathbb{A}_k)} f(h) dh \neq 0$$

if and only if

(i) $\pi = \bigotimes_{\nu} \pi_{\nu}$ is locally generic at all the places ν;
Example 2 (Gelbart, PS, Rogawski): $U(1, 1) \hookrightarrow U(2, 1)$.

$$\int_{U(1,1)(k) \backslash U(1,1)(\mathbb{A}_k)} f(h)dh \neq 0$$

if and only if

(i) $\pi = \bigotimes_\nu \pi_\nu$ is locally generic at all the places ν;
(ii) $L(s, BC(\pi))$ has a pole at $s = 1$.
The non-tempered representations that we will consider in this lecture are those which arise as local components of automorphic representations, and which are in particular unitary representations. These are parametrized by Arthur by a variant of the Weil-Deligne group:

$$\psi: W'_k \times \text{SL}_2(\mathbb{C}) \to LG$$

where $W'_k = W_k$ or $W_k \times \text{SL}_2(\mathbb{C})$ depending on whether k is Archimedean or not, and where ψ restricted to W_k has bounded image in the dual group.
The non-tempered representations that we will consider in this lecture are those which arise as local components of automorphic representations, and which are in particular unitary representations. These are parametrized by Arthur by a variant of the Weil-Deligne group:

$$\psi : W'_k \times SL_2(\mathbb{C}) \to \mathcal{L}G$$

where $W'_k = W_k$ or $W_k \times SL_2(\mathbb{C})$ depending on whether k is Archimedean or not, and where ψ restricted to W_k has bounded image in the dual group.
Let φ_ψ be the composition:

$$W'_k \to W'_k \times SL_2(\mathbb{C}) \to L^1 G,$$

where the mapping from W'_k to $SL_2(\mathbb{C})$ is given by the diagonal map $(\nu^{1/2}, \nu^{-1/2})$.

Associated to ψ, Arthur attaches a finite set $\Pi(\psi)$ of representations of $G(k)$ which contains the set of representations in the L-packet associated to φ_ψ. In this lecture we will consider only those representations of $G(k)$ which belong to the L-packet associated to the Langlands parameter ϕ_ψ associated to an A-parameter ψ.

Dipendra Prasad
Tata Institute of Fundamental Research
Let φ_ψ be the composition:

$$W'_k \to W'_k \times SL_2(\mathbb{C}) \to L^1 G,$$

where the mapping from W'_k to $SL_2(\mathbb{C})$ is given by the diagonal map $(\nu^{1/2}, \nu^{-1/2})$.

Associated to ψ, Arthur attaches a finite set $\Pi(\psi)$ of representations of $G(k)$ which contains the set of representations in the L-packet associated to φ_ψ.
Let φ_ψ be the composition:

$$W'_k \to W'_k \times SL_2(\mathbb{C}) \to L G,$$

where the mapping from W'_k to $SL_2(\mathbb{C})$ is given by the diagonal map $(\nu^{1/2}, \nu^{-1/2})$.

Associated to ψ, Arthur attaches a finite set $\Pi(\psi)$ of representations of $G(k)$ which contains the set of representations in the L-packet associated to φ_ψ.

In this lecture we will consider only those representations of $G(k)$ which belong to the L-packet associated to the Langlands parameter ϕ_ψ associated to an A-parameter ψ.
Theorem for GL_n

Theorem

Let π_1 be an irreducible admissible representation of $GL_{n+1}(k)$ with A-parameter, i.e., a representation of $W'_k \times SL_2(\mathbb{C})$, given by

$$\sigma_1 = \sum_{i=0}^d (\sigma_{i+1}, \sigma_i) \otimes \text{Sym}^i(C^2),$$

and π_2 an irreducible admissible representation of $GL_n(k)$ with A-parameter (of dimension n) given by

$$\sigma_2 = \sum_{i=0}^d \sigma_{i+1} \otimes \text{Sym}^i(C^2) \oplus \sum_{i=0}^d \sigma_{i-1} \otimes \text{Sym}^{i-1}(C^2),$$

then $\dim \text{Hom}(\pi_1, \pi_2) = 1$ for an arbitrary tempered part in σ_2.

Conversely, if $\dim \text{Hom}(\pi_1, \pi_2) = 1$, then the parameters of π_1 and of π_2 can be expressed in this form.
Theorem for GL_n

Let π_1 be an irreducible admissible representation of $GL_{n+1}(k)$ with A-parameter, i.e., a representation of $W'_k \times SL_2(\mathbb{C})$, given by

$$\sigma_1 = \sum_{i=0}^{d} (\sigma_{1,i}^+ \oplus \sigma_{1,i}^-) \otimes \text{Sym}^i(\mathbb{C}^2),$$

and π_2 an irreducible admissible representation of $GL_n(k)$ with A-parameter (of dimension n) given by

$$\sigma_2 = \sum_{i=0}^{d} \sigma_{2,i} \otimes \text{Sym}^i(\mathbb{C}^2) \oplus \sum_{i=0}^{d} \sigma_{2,i}^{-1} \otimes \text{Sym}^i(\mathbb{C}^2),$$

then $\dim \text{Hom}(\pi_1, \pi_2) = 1$ for an arbitrary tempered part in σ_2.

Conversely, if $\dim \text{Hom}(\pi_1, \pi_2) = 1$, then the parameters of π_1 and π_2 can be expressed in this form.
Theorem

Let π_1 be an irreducible admissible representation of $GL_{n+1}(k)$ with A-parameter, i.e., a representation of $W'_k \times SL_2(\mathbb{C})$, given by

$$\sigma_1 = \sum_{i=0}^{d} (\sigma_1^+, \sigma_1^-) \otimes \text{Sym}^i(\mathbb{C}^2),$$

and π_2 an irreducible admissible representation of $GL_n(k)$ with A-parameter (of dimension n) given by
Theorem for GL_n

Theorem

Let π_1 be an irreducible admissible representation of $GL_{n+1}(k)$ with A-parameter, i.e., a representation of $W'_k \times SL_2(\mathbb{C})$, given by

$$\sigma_1 = \sum_{i=0}^{d} (\sigma_{1,i}^+ \oplus \sigma_{1,i}^-) \otimes \text{Sym}^i(\mathbb{C}^2),$$

and π_2 an irreducible admissible representation of $GL_n(k)$ with A-parameter (of dimension n) given by

$$\sigma_2 = \sum_{i=0}^{d} \sigma_{1,i}^+ \otimes \text{Sym}^{i+1}(\mathbb{C}^2) \oplus \sum_{i=0}^{d} \sigma_{1,i}^- \otimes \text{Sym}^{i-1}(\mathbb{C}^2) \oplus \text{tempered},$$

then $\dim \text{Hom}(\pi_1, \pi_2) = 1$ for an arbitrary tempered part in σ_2.

Conversely, if $\dim \text{Hom}(\pi_1, \pi_2) = 1$, then the parameters of π_1 and π_2 can be expressed in this form.
Theorem

Let \(\pi_1 \) be an irreducible admissible representation of \(GL_{n+1}(k) \) with A-parameter, i.e., a representation of \(W'_k \times SL_2(\mathbb{C}) \), given by

\[
\sigma_1 = \sum_{i=0}^{d} (\sigma^+_{1,i} \oplus \sigma^-_{1,i}) \otimes \text{Sym}^i(\mathbb{C}^2),
\]

and \(\pi_2 \) an irreducible admissible representation of \(GL_n(k) \) with A-parameter (of dimension \(n \)) given by

\[
\sigma_2 = \sum_{i=0}^{d} \sigma^+_{1,i} \otimes \text{Sym}^{i+1}(\mathbb{C}^2) \oplus \sum_{i=0}^{d} \sigma^-_{1,i} \otimes \text{Sym}^{i-1}(\mathbb{C}^2) \oplus \text{tempered},
\]

then \(\dim \text{Hom}(\pi_1, \pi_2) = 1 \) for an arbitrary tempered part in \(\sigma_2 \).
Theorem for GL_n

Theorem

Let π_1 be an irreducible admissible representation of $GL_{n+1}(k)$ with A-parameter, i.e., a representation of $W'_k \times SL_2(\mathbb{C})$, given by

$$\sigma_1 = \sum_{i=0}^{d} (\sigma_{1,i}^+ \oplus \sigma_{1,i}^-) \otimes \text{Sym}^i(\mathbb{C}^2),$$

and π_2 an irreducible admissible representation of $GL_n(k)$ with A-parameter (of dimension n) given by

$$\sigma_2 = \sum_{i=0}^{d} \sigma_{1,i}^+ \otimes \text{Sym}^{i+1}(\mathbb{C}^2) \oplus \sum_{i=0}^{d} \sigma_{1,i}^- \otimes \text{Sym}^{i-1}(\mathbb{C}^2) \oplus \text{tempered},$$

then $\dim \text{Hom}(\pi_1, \pi_2) = 1$ for an arbitrary tempered part in σ_2. Conversely, if $\dim \text{Hom}(\pi_1, \pi_2) = 1$, then the parameters of π_1 and of π_2 can be expressed in this form.
Remark: The theorem roughly says that any non-tempered part of π_1 corresponding to $\text{Sym}^i(\mathbb{C}^2)$ must have a counterpart either in $\text{Sym}^{i+1}(\mathbb{C}^2)$ or $\text{Sym}^{i-1}(\mathbb{C}^2)$, thus the nontempered part of π_1 determines the nontempered part of π_2 with finite ambiguity.
Example 1: Classification of representations of GL_{n+1} which carry trivial invariant form for GL_n:

(a) Since the trivial representation of GL_{n+1} corresponds to $\text{Sym}^n(C_2)$, and the trivial representation of GL_n corresponds to $\text{Sym}^{n-1}(C_2)$, this is certainly an allowed branching by our recipe.

The others being,

(b) $\text{Sym}^{n-2}(C_2) \oplus$ tempered of GL_2
Example 1: Classification of representations of GL_{n+1} which carry trivial invariant form for GL_n:

(a) Since the trivial representation of GL_{n+1} corresponds to $\text{Sym}^n(\mathbb{C}^2)$, and the trivial representation of GL_n corresponds to $\text{Sym}^{n-1}(\mathbb{C}^2)$, this is certainly an allowed branching by our recipe. The others being,
Example 1: Classification of representations of GL_{n+1} which carry trivial invariant form for GL_n:

(a) Since the trivial representation of GL_{n+1} corresponds to $\text{Sym}^n(\mathbb{C}^2)$, and the trivial representation of GL_n corresponds to $\text{Sym}^{n-1}(\mathbb{C}^2)$, this is certainly an allowed branching by our recipe. The others being,

(b) $\text{Sym}^{n-2}(\mathbb{C}^2) \oplus$ tempered of GL_2
Example 2:

\[\pi_n \otimes \text{Sym}^1(\mathbb{C}^2), \]

a Speh module on \(GL_{2n}(k) \) associated to a cuspidal representation \(\pi_n \) of \(GL_n(k) \). In this case the only option for \(\sigma_2 \) by our recipe is,
Example 2:

\(\pi_n \otimes \text{Sym}^1(\mathbb{C}^2) \),

a Speh module on \(GL_{2n}(k) \) associated to a cuspidal representation \(\pi_n \) of \(GL_n(k) \). In this case the only option for \(\sigma_2 \) by our recipe is,

\[\sigma_2 = \pi_n \oplus \text{arbitrary tempered}, \]

so only generic representations appear in this branching.
A paper of Clozel [IMRN, 2004] based on elaboration of Arthur’s work, and the Burger-Sarnak principle, proves that given a reductive subgroup H of a reductive group G, there is a map from unipotent conjugacy classes in the L-group of G to the unipotent conjugacy classes in the L-group of H which underlies the restriction problem in the unitary case (direct integral and all that!),
A paper of Clozel [IMRN, 2004] based on elaboration of Arthur’s work, and the Burger-Sarnak principle, proves that given a reductive subgroup H of a reductive group G, there is a map from unipotent conjugacy classes in the L-group of G to the unipotent conjugacy classes in the L-group of H which underlies the restriction problem in the unitary case (direct integral and all that!), i.e. the restriction of a representation of G, with an A-parameter containing a unipotent conjugacy class u_G of $^L G$ contains only those representations of H in the spectral decomposition upon restriction to it which have a particular unipotent conjugacy class u_H of $^L H$.
Clozel’s theorem has been made precise in some cases by A. Venkatesh [2005]. For example in the restriction problem from $\text{GL}_{n+1}(k)$ to $\text{GL}_n(k)$, if the unipotent element in $\text{GL}_{n+1}(\mathbb{C})$ corresponds to the partition $u = n_1 \geq n_2 \geq \cdots \geq n_r \geq 1$, then the only unipotent element of $\text{GL}_n(\mathbb{C})$ involved is the one $u' = n_1' \geq n_2' \geq \cdots \geq n_r' \geq 0$, omitting those n_i which are 1, and adding a few 1’s at the end if necessary. There is an analogous statement for induction of unitary representations of $\text{GL}_n(k)$ to $\text{GL}_{n+1}(k)$.
Clozel’s theorem has been made precise in some cases by A. Venkatesh [2005]. For example in the restriction problem from $GL_{n+1}(k)$ to $GL_n(k)$, if the unipotent element in $GL_{n+1}(\mathbb{C})$ corresponds to the partition $u = n_1 \geq n_2 \geq \cdots \geq n_r \geq 1$, then the only unipotent element of $GL_n(\mathbb{C})$ involved is the one $u^- = n_1 - 1 \geq n_2 - 1 \geq \cdots \geq n_r - 1 \geq 0$, omitting those n_i which are 1, and adding a few 1’s at the end if necessary.
Comparison with the work of Clozel and Venkatesh

Clozel’s theorem has been made precise in some cases by A. Venkatesh [2005]. For example in the restriction problem from $\text{GL}_{n+1}(k)$ to $\text{GL}_n(k)$, if the unipotent element in $\text{GL}_{n+1}(\mathbb{C})$ corresponds to the partition $u = n_1 \geq n_2 \geq \cdots \geq n_r \geq 1$, then the only unipotent element of $\text{GL}_n(\mathbb{C})$ involved is the one $u^- = n_1 - 1 \geq n_2 - 1 \geq \cdots \geq n_r - 1 \geq 0$, omitting those n_i which are 1, and adding a few 1’s at the end if necessary.

There is an analogous statement for induction of unitary representations of $\text{GL}_n(k)$ to $\text{GL}_{n+1}(k)$.
The important point to note is that for both induction and restriction questions in this unitary context, one goes from less tempered to more tempered representations (such as in the Harish-Chandra’s Plancherel decomposition for the space $L^2([G \times G]/\Delta(G))$, and in particular, there is no Frobenius reciprocity for unitary representations, whereas we are concerned with admissible representations here which do have Frobenius reciprocity.
The important point to note is that for both induction and restriction questions in this unitary context, one goes from less tempered to more tempered representations (such as in the Harish-Chandra’s Plancherel decomposition for the space $L^2([G \times G]/\Delta(G))$, and in particular, there is no Frobenius reciprocity for unitary representations, whereas we are concerned with admissible representations here which do have Frobenius reciprocity.

One way to fix this asymmetry, and the corresponding lack of Frobenius reciprocity, is to have the unipotent conjugacy classes u_1, u_2 satisfy,

1. $u_2 \geq u_1$,
2. $u_1 \geq u_2$.
The important point to note is that for both induction and restriction questions in this unitary context, one goes from less tempered to more tempered representations (such as in the Harish-Chandra’s Plancherel decomposition for the space $L^2([G \times G]/\Delta(G))$, and in particular, there is no Frobenius reciprocity for unitary representations, whereas we are concerned with admissible representations here which do have Frobenius reciprocity.

One way to fix this asymmetry, and the corresponding lack of Frobenius reciprocity, is to have the unipotent conjugacy classes u_1, u_2 satisfy,

1. $u_2 \geq u_1^-$,
2. $u_1 \geq u_2^-$.

Our theorem satisfies these in-qualities.
Now we discuss branching laws for classical groups emphasizing the case of orthogonal groups. Thus we discuss the branching laws from $SO(n + 1)$ to $SO(n)$, more generally from $SO(m)$ to $SO(n)$ with $n + 1 \equiv m \text{ mod } 2$ corresponding to Bessel models.
Now we discuss branching laws for classical groups emphasizing the case of orthogonal groups. Thus we discuss the branching laws from $SO(n + 1)$ to $SO(n)$, more generally from $SO(m)$ to $SO(n)$ with $n + 1 \equiv m \mod 2$ corresponding to Bessel models.

Let $\psi_1 : W'_k \times \text{SL}_2(\mathbb{C}) \to LSO_m$ and $\psi_2 : W'_k \times \text{SL}_2(\mathbb{C}) \to LSO_n$ be A-parameters with the corresponding Langlands parameters $\phi_{\psi_1} : W'_k \to LSO_m$, and $\phi_{\psi_2} : W'_k \to LSO_n$.
Now we discuss branching laws for classical groups emphasizing the case of orthogonal groups. Thus we discuss the branching laws from $SO(n + 1)$ to $SO(n)$, more generally from $SO(m)$ to $SO(n)$ with $n + 1 \equiv m \mod 2$ corresponding to Bessel models.

Let $\psi_1 : W'_k \times SL_2(\mathbb{C}) \to LSO_m$ and $\psi_2 : W'_k \times SL_2(\mathbb{C}) \to LSO_n$ be A-parameters with the corresponding Langlands parameters $\phi_{\psi_1} : W'_k \to LSO_m$, and $\phi_{\psi_2} : W'_k \to LSO_n$.

Let π_1 be an irreducible admissible representation of say $SO_m(k)$ and π_2 of $SO_n(k)$ with $m \geq n$ belonging to the L-packets associated to the Langlands parameters $\phi_{\psi_1} : W'_k \to LSO_m(\mathbb{C})$, and $\phi_{\psi_2} : W'_k \to LSO_m(\mathbb{C})$.
The L-groups of the groups $SO_m(k)$ and $SO_n(k)$ are the usual orthogonal and symplectic groups which come equipped with their natural representations.
The L-groups of the groups $\operatorname{SO}_m(k)$ and $\operatorname{SO}_n(k)$ are the usual orthogonal and symplectic groups which come equipped with their natural representations. When we talk of $L(s, \pi_1 \times \pi_2)$ below, it is for the tensor product of the natural representations of the two L-groups involved. We will also need the adjoint representation of the L-group which is used to define the adjoint L-function.
Conjecture

Let π_1, π_2 be irreducible admissible representations of $\text{SO}_m(k), \text{SO}_n(k)$ belonging to L-packets associated to ϕ_{ψ_1} and ϕ_{ψ_2}, with $m > n$, and $m - n \equiv 1 \mod 2$. Then if π_2 appears in the Bessel model of $\pi_1,$

1. The Langlands parameters ϕ_{ψ_1} and ϕ_{ψ_2} considered as representations of W'_k inside $\text{GL}_{m'}(\mathbb{C})$ and $\text{GL}_{n'}(\mathbb{C})$ are as in the theorem on $\text{GL}_n(k)$ (the tempered part being arbitrary but of appropriate size).
Conjecture

Let π_1, π_2 be irreducible admissible representations of $\text{SO}_m(k), \text{SO}_n(k)$ belonging to L-packets associated to ϕ_{ψ_1} and ϕ_{ψ_2}, with $m > n$, and $m - n \equiv 1 \pmod{2}$. Then if π_2 appears in the Bessel model of π_1,

1. The Langlands parameters ϕ_{ψ_1} and ϕ_{ψ_2} considered as representations of W'_k inside $\text{GL}_{m'}(\mathbb{C})$ and $\text{GL}_{n'}(\mathbb{C})$ are as in the theorem on $\text{GL}_n(k)$ (the tempered part being arbitrary but of appropriate size).

2. If the Langlands parameters ϕ_{ψ_1} and ϕ_{ψ_2} are as in 1., then the (Vogan) L-packet of representations has a unique member with $\text{Hom}[\pi_1, \pi_2] \neq 0$.

Classical groups, the local case

<table>
<thead>
<tr>
<th>Conjecture</th>
</tr>
</thead>
</table>

Let π_1, π_2 be irreducible admissible representations of $\text{SO}_m(k), \text{SO}_n(k)$ belonging to L-packets associated to ϕ_{ψ_1} and ϕ_{ψ_2}, with $m > n$, and $m - n \equiv 1 \mod 2$. Then if π_2 appears in the Bessel model of π_1,

1. The Langlands parameters ϕ_{ψ_1} and ϕ_{ψ_2} considered as representations of W'_k inside $\text{GL}_{m'}(\mathbb{C})$ and $\text{GL}_{n'}(\mathbb{C})$ are as in the theorem on $\text{GL}_n(k)$ (the tempered part being arbitrary but of appropriate size).

2. If the Langlands parameters ϕ_{ψ_1} and ϕ_{ψ_2} are as in 1., then the (Vogan) L-packet of representations has a unique member with $\text{Hom} [\pi_1, \pi_2] \neq 0$.

3. The ϵ-factors constructed out of possible symplectic root numbers just as in the earlier works tells which member of the L-packet has the invariant form.

Dipendra Prasad Tata Institute of Fundamental Research

Branching laws for non-tempered representations
Remarks: 1. For representations π_1 and π_2 appearing in the previous conjecture, the L-function

$$\frac{L(s + 1/2, \pi_1 \times \pi_2)}{L(s + 1, \text{Ad} \pi_1)L(s + 1, \text{Ad} \pi_2)}'$$

is not zero (but can have a pole) at $s = 0$.

2. For representations π_1 and π_2 appearing in the previous conjecture for which the A-parameter is discrete, the L-function

$$\frac{L(s + 1/2, \pi_1 \times \pi_2)}{L(s + 1, \text{Ad} \pi_1)L(s + 1, \text{Ad} \pi_2)}'$$

has neither a zero nor a pole at $s = 0$.

In a series of paper by Ginzburg, Jiang, Rallis, and Soudry, the authors construct backward lifting from $GL_n(k)$ to classical groups typically by constructing a representation of a classical group by parabolic induction from the representation of $GL_n(k)$ which sits as a Levi subgroup, taking its Langlands quotient, and then taking some Bessel or Fourier-Jacobi model (which we will still not define!).
In a series of paper by Ginzburg, Jiang, Rallis, and Soudry, the authors construct backward lifting from $GL_n(k)$ to classical groups typically by constructing a representation of a classical group by parabolic induction from the representation of $GL_n(k)$ which sits as a Levi subgroup, taking its Langlands quotient, and then taking some Bessel or Fourier-Jacobi model (which we will still not define!). We describe an instance of their work, and how it fits well with our conjecture.
The backward lift from $GL_{2n}(k)$ to $SO_{2n+1}(k)$ can be constructed as follows.
The backward lift from $GL_{2n}(k)$ to $SO_{2n+1}(k)$ can be constructed as follows. Suppose π is a supercuspidal representation of $GL_{2n}(k)$ with symplectic Langlands parameter.

Dipendra Prasad Tata Institute of Fundamental Research

Branching laws for non-tempered representations
The backward lift from $GL_{2n}(k)$ to $SO_{2n+1}(k)$ can be constructed as follows. Suppose π is a supercuspidal representation of $GL_{2n}(k)$ with symplectic Langlands parameter. One induces (a twist of) π from $GL_{2n}(k)$ which is a Levi subgroup of $SO_{4n}(k)$ to $SO_{4n}(k)$, and takes an appropriate Langlands quotient at a point of reducibility, and then compute a Bessel model down to $SO_{2n+1}(k)$.
An example from the work of Ginzburg, Jiang, Rallis, Soudry

The Langlands parameter of the representation of $SO_{4n}(k)$ which is a Langlands quotient at a point of reducibility of the principal series representation of $SO_{4n}(k)$ is,

$$\sigma \otimes \text{Sym}^1(\mathbb{C}^2) = \sigma(\nu^{-1/2} \oplus \nu^{1/2}).$$
The Langlands parameter of the representation of $SO_{4n}(k)$ which is a Langlands quotient at a point of reducibility of the principal series representation of $SO_{4n}(k)$ is,

$$\sigma \otimes \text{Sym}^1(\mathbb{C}^2) = \sigma(\nu^{-1/2} \oplus \nu^{1/2}).$$

In this case, π_2 which is a representation of an odd orthogonal group must have the parameter σ, and so cannot live on a smaller orthogonal group than $SO_{2n+1}(k)$, and on SO_{2n+1} too, there is no option but to be the backward lift of π_1.
Here is the conjecture on period integral of Automorphic representations.
Here is the conjecture on period integral of Automorphic representations.

Conjecture

Let F be a number field, and $\Pi_1 \times \Pi_2$ an irreducible automorphic representation of $G = \text{SO}_{n+1}(\mathbb{A}_F) \times \text{SO}_n(\mathbb{A}_F)$ lying in the discrete spectrum, with $H = \text{SO}_n(F)$ a subgroup of $\text{SO}_{n+1}(F)$ defined by a codimension one subspace W of a quadratic space V over F.
Here is the conjecture on period integral of Automorphic representations.

Conjecture

Let F be a number field, and $\Pi_1 \times \Pi_2$ an irreducible automorphic representation of $G = \text{SO}_{n+1}(\mathbb{A}_F) \times \text{SO}_n(\mathbb{A}_F)$ lying in the discrete spectrum, with $H = \text{SO}_n(F)$ a subgroup of $\text{SO}_{n+1}(F)$ defined by a codimension one subspace W of a quadratic space V over F. Then

$$\int_{H(F)\backslash H(\mathbb{A}_F)} fdh,$$

is nonzero for some f an automorphic function on $G(\mathbb{A}_F)$ belonging to $\Pi_1 \times \Pi_2$ if and only if:
Here is the conjecture on period integral of Automorphic representations.

Conjecture

Let F be a number field, and $\Pi_1 \times \Pi_2$ an irreducible automorphic representation of $G = \text{SO}_{n+1}(\mathbb{A}_F) \times \text{SO}_n(\mathbb{A}_F)$ lying in the discrete spectrum, with $H = \text{SO}_n(F)$ a subgroup of $\text{SO}_{n+1}(F)$ defined by a codimension one subspace W of a quadratic space V over F. Then

$$\int_{H(F) \backslash H(\mathbb{A}_F)} fdh,$$

is nonzero for some f an automorphic function on $G(\mathbb{A}_F)$ belonging to $\Pi_1 \times \Pi_2$ if and only if:

1. The Langlands parameters associated to Π_1 and Π_2 are in the relationship as in the local theorem on GL_n.
Conjecture

2. $\text{Hom}_{H(F_v)}[\Pi_{1,v} \otimes \Pi_{2,v}, \mathbb{C}] \neq 0$ for all places v of F.
Classical groups, the global case

Conjecture

2. $\text{Hom}_{H(F_v)}[\Pi_{1,v} \otimes \Pi_{2,v}, \mathbb{C}] \neq 0$ for all places v of F.

3.

$$
\frac{L(s + 1/2, \Pi_{1} \otimes \Pi_{2})}{L(s + 1, \text{Ad} \Pi_{1})L(s + 1, \text{Ad} \Pi_{2})} \\
\text{does not have a zero at } s = 0.
$$
Conjecture

2. \(\text{Hom}_{H(F_v)}[\Pi_{1,v} \otimes \Pi_{2,v}, \mathbb{C}] \neq 0 \) for all places \(v \) of \(F \).

3. \[
\frac{L(s + 1/2, \Pi_1 \otimes \Pi_2)}{L(s + 1, \text{Ad} \Pi_1)L(s + 1, \text{Ad} \Pi_2)}'
\]

\(\text{does not have a zero at } s = 0. \)

Further, if the \(L \)-function condition is satisfied, there is a globally relevant pure inner form \(G' \) of \(G \) with an automorphic representation \(\Pi'_1 \otimes \Pi'_2 \) nearly equivalent to \(\Pi_1 \otimes \Pi_2 \) which is globally distinguished by \(H' \).
Theorem

Let F be a number field, and $\Pi_1 \times \Pi_2$ an irreducible automorphic representation of $G = \text{SO}_{n+1}(\mathbb{A}_F) \times \text{SO}_n(\mathbb{A}_F)$ lying in the discrete spectrum, with $H = \text{SO}_n(F)$ a subgroup of $\text{SO}_{n+1}(F)$ defined by a codimension one subspace W of a quadratic space V over F. Then if the Langlands parameters associated to Π_1 and Π_2 are in the relationship as in the local theorem on GL_n, then, $L(s + \frac{1}{2}, \Pi_1 \otimes \Pi_2) = L(s + 1, \text{Ad} \Pi_1) L(s + 1, \text{Ad} \Pi_2)$, does not have a pole at $s = 0$, and its zeros at $s = 0$ correspond to zeros of $L(1/2, \Pi)$ where Π is a symplectic representation constructed as a tensor product of a subrepresentation of Π_1 with a subrepresentation of Π_2 (self-dual of appropriate parity).
A theorem on L-functions

Theorem

Let F be a number field, and $\Pi_1 \times \Pi_2$ an irreducible automorphic representation of $G = \text{SO}_{n+1}(\mathbb{A}_F) \times \text{SO}_n(\mathbb{A}_F)$ lying in the discrete spectrum, with $H = \text{SO}_n(F)$ a subgroup of $\text{SO}_{n+1}(F)$ defined by a codimension one subspace W of a quadratic space V over F. Then if the Langlands parameters associated to Π_1 and Π_2 are in the relationship as in the local theorem on GL_n, then,
Let F be a number field, and $\Pi_1 \times \Pi_2$ an irreducible automorphic representation of $G = \text{SO}_{n+1}(\mathbb{A}_F) \times \text{SO}_n(\mathbb{A}_F)$ lying in the discrete spectrum, with $H = \text{SO}_n(F)$ a subgroup of $\text{SO}_{n+1}(F)$ defined by a codimension one subspace W of a quadratic space V over F. Then if the Langlands parameters associated to Π_1 and Π_2 are in the relationship as in the local theorem on GL_n, then,

\[
\frac{L(s + 1/2, \Pi_1 \otimes \Pi_2)}{L(s + 1, \text{Ad} \Pi_1)L(s + 1, \text{Ad} \Pi_2)}
\]

does not have a pole at $s = 0$, and its zeros at $s = 0$ correspond to zeros of $L(1/2, \Pi)$ where Π is a symplectic representation constructed as a tensor product of a subrepresentation of Π_1 with a subrepresentation of Π_2 (self-dual of appropriate parity).
1. The L-function,

$$\frac{L(s + 1/2, \Pi_1 \otimes \Pi_2)}{L(s + 1, \text{Ad} \Pi_1)L(s + 1, \text{Ad} \Pi_2)}$$

which seems to play a large role in these branching laws came up in the work of Ichino and Ikeda who proposed that its non-vanishing should control nonvanishing of period integrals.
Acknowledgement

1. The L-function,

$$\frac{L(s + 1/2, \Pi_1 \otimes \Pi_2)}{L(s + 1, \text{Ad} \Pi_1)L(s + 1, \text{Ad} \Pi_2)}$$

which seems to play a large role in these branching laws came up in the work of Ichino and Ikeda who proposed that its non-vanishing should control nonvanishing of period integrals.

2. The initial suggestion to use epsilon factors in these branching laws is due to Michael Harris. Thanks Michael!
Thank you!