Slugs on STEM: preparing competent & diverse teachers

Gretchen Andreasen
Cal Teach, UCSC

Nandini Bhattacharyya
Mathematics, UCSC

Debra Lewis
Mathematics, UCSC
UC Santa Cruz: serving Silicon Valley & Steinbeck Country

Source: U.S. Census Bureau Census 2010 Summary File 1 population by census tract
Many UCSC students come from affluent communities in the techno-centric Greater Bay Area.

Many UCSC students come from the agriculture-based communities of the Central Coast, many of which are high-need for qualified STEM teachers.

Specialized major pathways, learning support programs, and ample opportunities for research and teaching experience help students to formulate and achieve their educational and career goals.
High quality instruction at all levels has been a top priority since the founding of UCSC in 1965.

Student evaluations of instructors play a crucial role in personnel actions – a highly structured review process enforces the campus commitment to excellent in research and teaching.

Several Academic Senate committees, both at UCSC and UC-wide, focus on pedagogy.
Several Academic Senate committees focus on pedagogy:

- Teaching
- Educational Policy
- Graduate Council
- Preparatory Education
- Planning and Budget
- International Education
- Academic Freedom
- Career Advising
- Computing and Telecommunication
- Affirmative Action and Diversity
UCSC offers three pathways to a mathematics BA:

- **Pure mathematics**

 designed to serve grad school-bound students,
 provide adequate GRE prep by fall of senior year

- **Mathematics education**

 designed for prospective teachers,
 meet CSET waiver requirements by graduation

- **Computational mathematics**

 designed for students with broad STEM interests,
 accommodate major changes, outside pre-reqs
Math major demographics snapshot
A unified foundation

All three paths share common basic requirements:

• introductory requirements:
 • Calculus
 • Vector calculus
 • Linear algebra
 • Introduction to proof

• comprehensive requirement: senior seminar or thesis
• general education requirements.

Many students take precalculus, and possibly college algebra, at UCSC before progressing to calculus.
Advanced (mostly) requirements

<table>
<thead>
<tr>
<th>Education*</th>
<th>Pure</th>
<th>Computational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics (AMS)</td>
<td>Differential equations</td>
<td>Differential equations</td>
</tr>
<tr>
<td>Real or Complex analysis</td>
<td>Complex analysis</td>
<td>Real or Complex analysis</td>
</tr>
<tr>
<td>Number theory</td>
<td>Real analysis</td>
<td>Number theory</td>
</tr>
<tr>
<td>Algebra</td>
<td>Algebra</td>
<td>Algebra or Advanced linear algebra</td>
</tr>
<tr>
<td>Introduction to probability theory (AMS)</td>
<td>Advanced linear algebra</td>
<td>Ordinary or partial differential equations (adv)</td>
</tr>
<tr>
<td>Classical geometry: Euclidean & non-Euclidean</td>
<td>Advanced geometry (four options)</td>
<td>Advanced computational elective</td>
</tr>
<tr>
<td>History of mathematics</td>
<td>Three electives</td>
<td>Two electives (with options in engineering, applied sci.)</td>
</tr>
<tr>
<td>Supervised teaching (Cal Teach or departmental teaching)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For CSET waiver, three additional courses are required: Intro to Teaching Math, one additional math course, one computer science course.
On-campus teaching opportunities

UCSC math majors have many near peer instruction/tutoring opportunities:

• Academic Excellence Program (ACE) 1-on-1 drop-in tutoring/small group tutoring
• Learning Support Services funded Modified Supplemental Instruction (MSI) Sessions
• Supervised Teaching Experience

Some are teach-as-you-are, while others involve substantial mentoring and oversight from the instructor of record.
ACE is an academic support program dedicated to increasing the diversity of UCSC STEM graduates (modeled on Uri Treisman’s UCB program).

ACE is a community of scholars who strive for and commit to academic excellence.

How does ACE Work?

ACE offers active learning secondary discussion sections and peer mentoring for selected courses in gateway STEM courses. Discussion sections meet twice each week for 1 hour and 45 minutes. ACE students also attend a one-hour, small-group peer mentoring session each week.
Modified supplemental instruction (MSI) provides crucial learning support for students in introductory courses & instructional experience for advanced students.

Participation in MSI reduced the no pass rate in Physical and Biological Sciences courses from 19% to 13%.
Modified Supplemental Instruction (MSI)

What is MSI?
Modified Supplemental Instruction gives students the opportunity to learn together in small groups led by advanced Student Learning Assistants. MSI is guaranteed study/learning time facilitated by someone who has already been successful in the class.

How MSI works:
Unless otherwise noted, you may attend any MSI session at any time during the quarter without making a weekly commitment. MSI sessions are available on a first-come, first-serve basis. Please see the Professor or the Learning Assistant in your class for more information.

Comments about MSI
- It's nice to have people who are all in need of help coming together. I've met new people from my class and I understand the concepts better. (Chem 1C Student)
- The Learning Assistant included everyone and made sure every person understood a concept

Click here for Complete Schedule

Announcements
MSI will begin during the 2nd full week of the quarter. Classes have been selected; see the list below. Please see the MSI Learning Assistant if you have any questions.

MSI Classes for Spring 2014:
- AMS 5, 7, 11A, 11B
- ASTR 3
- BIOE 20B
- BIOL 20A, 100, 105*, 115, 135
- CHEM 1A*, 1B*, 1C*, 108B
- CMPE 12, 16, 100
- CMPS 11, 12A, 12B, 17, 101
- EART 110C
- ECON 1, 2, 100A, 100B, 113
- MATH 3*, 11A, 11B, 19A, 19B, 22, 23A
Supervised Teaching Experience: Math 188

- Gives students hands-on teaching experience in courses such as pre-calculus and calculus
- Commitment is 15 hours/week
- Students get to observe big lecture courses, as well as try out independent teaching in small sections
- Students are mentored by department lecturers and faculty to develop curriculum and evaluation strategies
Cal Teach goal
to increase the number of UC grads who pursue science and math teaching careers

Cal Teach provides undergraduates with coursework and field experiences in K-12 schools rather than waiting until post-bacc credential year (as is the norm in California)
Cal Teach features

- Recruitment and advising
- Collaboration among science, math and education faculty
- Sequence of K-12 internships with supporting education coursework
- Mentoring by experienced K-12 teachers
- Financial incentives for students and mentors
- Summer teaching and research opportunities
- Community of future teachers
Cal Teach Course @ UCSC

Cal Teach Placement @ a Local School
for UCSC math majors

• Math Education Track
 – CaT1 and CaT2 satisfy supervised teaching requirement

• STEM Education Minor
 – CaT1, 2, and 3 are 3 of 7 courses

• GE Requirement (may increase recruitment)
 – satisfy PR-S (Practice - Service Learning)

• Communication and teaching skills

• Community of peers and mentors

• Access to scholarships
Financial support for Cal Teach participants

Reimbursements
 CBEST, CSET, fingerprinting
Access to scholarships
 Internship Scholarships
 $150 - $600
 Mark Bruce Fellowship
 $1,000 - $20,000
 NSF Noyce Scholarships
 $20,000 or *more

*for some transfer students
Support for teachers in the field: Monterey Bay Area Math Project

MBAMP provides ongoing training and support for K-12 math teachers:

• Summer courses
• Spring workshop

MBAMP is part of the California Mathematics Project
The California Mathematics Project is a network of K-12 teachers and university faculty dedicated to providing students a rich, rigorous, and coherent mathematics curriculum taught by competent and confident mathematics teachers.

CMP enhances teachers’ mathematical content knowledge and pedagogical content knowledge.
Challenges and obstacles

• Transition from plug and chug computation to exposition-based exploration
• Limited departmental resources
• Pure ‘versus’ education elitism
• Career uncertainty
Making the leap

The transition to advanced coursework can undermine students’ mathematical confidence:

- very rapid increase in abstraction and rigor
- demands on underdeveloped expository skills
- unfamiliar and potentially intimidating instructors
- loss of many UCSC learning support programs
- negative student expectations
UCSC Math relies heavily on lecturers – many of whom are exceptional instructors – and has few ladder rank faculty.

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Instructor</td>
<td>Course Title</td>
</tr>
<tr>
<td>002</td>
<td></td>
<td>003</td>
</tr>
<tr>
<td>College Algebra for Calculus</td>
<td></td>
<td>Precalculus</td>
</tr>
<tr>
<td>003-01</td>
<td></td>
<td>011A</td>
</tr>
<tr>
<td>Precalculus</td>
<td></td>
<td>Calculus with Applications</td>
</tr>
<tr>
<td>003-02</td>
<td></td>
<td>011B</td>
</tr>
<tr>
<td>Precalculus</td>
<td></td>
<td>Calculus with Applications</td>
</tr>
<tr>
<td>011A</td>
<td></td>
<td>019A</td>
</tr>
<tr>
<td>Calculus with Applications</td>
<td></td>
<td>Calculus for Science, Engineering, and Mathematics</td>
</tr>
<tr>
<td>011B</td>
<td></td>
<td>019B</td>
</tr>
<tr>
<td>Calculus with Applications</td>
<td></td>
<td>Calculus for Science, Engineering, and Mathematics</td>
</tr>
<tr>
<td>019A</td>
<td></td>
<td>0208</td>
</tr>
<tr>
<td>Calculus for Science, Engineering, and Mathematics</td>
<td></td>
<td>Honors Calculus</td>
</tr>
<tr>
<td>019B</td>
<td></td>
<td>021</td>
</tr>
<tr>
<td>Calculus for Science, Engineering, and Mathematics</td>
<td></td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>020A</td>
<td></td>
<td>022</td>
</tr>
<tr>
<td>Honors Calculus</td>
<td></td>
<td>Introduction to Calculus of Several Variables</td>
</tr>
<tr>
<td>021</td>
<td></td>
<td>023A</td>
</tr>
<tr>
<td>Linear Algebra</td>
<td></td>
<td>Vector Calculus</td>
</tr>
<tr>
<td>023A</td>
<td></td>
<td>023B</td>
</tr>
<tr>
<td>Vector Calculus</td>
<td></td>
<td>Vector Calculus</td>
</tr>
<tr>
<td>023B</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Vector Calculus</td>
<td></td>
<td>Introduction to Proof and Problem Solving</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>103A</td>
</tr>
<tr>
<td>Introduction to Proof and Problem Solving</td>
<td></td>
<td>Complex Analysis</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>103A</td>
</tr>
<tr>
<td>Mathematical Problem Solving</td>
<td></td>
<td>Complex Analysis</td>
</tr>
<tr>
<td>105A</td>
<td></td>
<td>105A</td>
</tr>
<tr>
<td>Real Analysis</td>
<td></td>
<td>Real Analysis</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td>111A</td>
</tr>
<tr>
<td>Systems of Ordinary Differential Equations</td>
<td></td>
<td>Algebra</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>111A</td>
</tr>
<tr>
<td>Introduction to Number Theory</td>
<td></td>
<td>Algebra</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>Advanced Number Theory</td>
<td></td>
<td>Adv Linear Algebra</td>
</tr>
<tr>
<td>194-01</td>
<td></td>
<td>181</td>
</tr>
<tr>
<td>Senior Seminar</td>
<td></td>
<td>History of Mathematics</td>
</tr>
<tr>
<td>194-02</td>
<td></td>
<td>194</td>
</tr>
<tr>
<td>Senior Seminar</td>
<td></td>
<td>Senior Seminar</td>
</tr>
</tbody>
</table>

Sharp differences between lower and upper division courses and instructor pools increase the stress on weak students.
Healing the perceived pure/education split

• De facto direction of students with weak K-12 math prep onto education path, students with stronger math backgrounds into pure path

• Many Latinos and Latinas choose the education path, some are pushed onto it

• Study groups tend to consistent of pure or pure/computational path students or all educational path ones – little mixing

• Many math majors believe that Cal Teach is only for students in the education path
If not a math teacher, then what?

• Not all declared math majors thrive in the major

• Content mastery (or lack thereof) aside, our department is reluctant to send into the classroom teachers who regard math as something to be survived

• Does the mathematical training of teachers help them to find rewarding new career paths if they don’t enter or choose to leave the profession?

• How can the pathways be improved to increase both success in the chosen path and versatility?