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The study of the classical obstacle problem began in the 60’s with the
pioneering works of G. Stampacchia, H. Lewy, J. L. Lions. During the past
five decades it has led to beautiful and deep developments in calculus of
variations and geometric partial di↵erential equations.

One of its crowning achievements has been the development, due to L.
Ca↵arelli, of the theory of free boundaries. Nowadays, the obstacle problem
continues to o↵er many challenges and its study is as active as ever.

Over the past years there has been some interesting progress in the
obstacle problem for the fractional Laplacian.

In this talk I will overview this problem and present some new results on
the regularity of the free boundary.
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Classical obstacle problem

Suppose we want to wrap a meatloaf in a plastic wrap.
Here the meatloaf is the obstacle, and the configuration of the plastic
wrap, after it adjusts to the geometry of the meatloaf, represents the
solution to the obstacle problem.
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Formulation of the classical obstacle problem

We are given:

� 2 C 2(D), the obstacle;

 2 W 1,2(D) with �   on @D, the boundary values;

f 2 L1(D) , the source term.

We want to minimize
Z

D
(|ru|2 + 2fu)dx

over K = {u 2 W 1,2(D) : u =  on @D, u � � a.e. in D}.
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Classical obstacle problem

Figure: “Regularity of Free Boundaries in Obstacle-Type Problems”, by Petrosyan,

Shahgholian, Uraltseva
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There exists a unique minimizer u which satisfies:

�u = f in {u > �}

�u = �� a.e. on {u = �}.

Coincidence set: ⇤�(u) = {x 2 D | u(x) = �(x)}.
Free boundary: ��(u) = @{x 2 D | u(x) = �(x)}.

First fundamental question: How smooth is the solution? The optimal
regularity of the solution is u 2 C 1,1

loc (D) ⇠= W 2,1
loc (D).

Second fundamental question: How smooth is the free boundary? In 1977
Kinderlherer and Nirenberg proved that, if the free boundary is a C 1

hypersurface, then it is C! (real analytic). In the same year Ca↵arelli
developed his theory of the regularity of the free boundary and proved
Lipschitz regularity, and then proved how to go from Lipschitz to C 1,↵.
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Obstacle problem for the fractional Laplacian

We study the obstacle problem defined by the fractional Laplacian with
gradient perturbation

min{Lbu(x), bu(x)� b'(x)} = 0, 8 x 2 Rn, (0.1)

where we denote

L (x) := (��)s  (x) + hb(x),r (x)i+ c(x) (x), 8 2 C 2
0 (Rn).

The action of (��)s on  2 C 2
0 (Rn) is given by

(��)s (x) = cn,s p.v.

Z

Rn

 (x)�  (y)

|x � y |n+2s
dy ,

understood in the sense of the principal value.
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Regularity of the solution

Assumptions:

s 2 (1/2, 1),

b 2 C s(Rn;Rn),

c 2 C s(Rn) with c � 0,

b' 2 C 3s(Rn) \ C0(Rn).

Under these conditions, Petrosyan-Pop (2015) proved

existence,

uniqueness (assuming c(x) � c0 > 0, 8x 2 Rn, and b 2 C 0,1),

optimal regularity of solution, bu 2 C 1,s(Rn).
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Regular set

Here our focus is the free boundary, defined as b�(bu) := @{bu = b'}.
We will prove regularity of a special subset of b�(bu), the so called regular
set, denoted by b�1+s(bu).

The set of regular free boundary points, b�1+s(bu), is, informally, the set of
points of b�(bu) where the limit of a frequency function of Almgren type
attains its smallest possible value - formal definition in a few slides :)
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Main result: C 1,� regularity of the regular free boundary

Theorem (Garofalo, Petrosyan, Pop & Smit Vega Garcia, 2016)

Let s 2 (1/2, 1), b 2 C s(Rn;Rn), 0  c 2 C s(Rn), b' 2 C 3s(Rn)\C0(Rn).
Let bu 2 C 1,s(Rn) solve (0.1) and x0 2 b�1+s(bu). Then 9� 2 (0, 1) and
⌘ > 0, such that

B⌘(x0) \ b�(bu) ✓ b�1+s(bu),

and 9g 2 C 1,�(Rn�1), such that

B⌘(x0) \ b�(bu) = B⌘(x0) \ {xn  g(x 0)},

after a possible rotation in Rn.
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Reduction to an obstable problem for the fractional
Laplacian without drift

We assume s 2 (1/2, 1), b 2 C s(Rn;Rn), 0  c 2 C s(Rn),
b' 2 C 3s(Rn) \ C0(Rn).

Given bu 2 C 1,s(Rn) a solution of (0.1), let w solve

(��)sw = hb(x),rbu(x)i+ c(x)bu(x).

Then w 2 C 3s(Rn). If u := bu � w and ' := b'� w , then u solves the
obstacle problem without drift

min{(��)su(x), u(x)� '(x)} = 0, 8x 2 Rn. (0.2)

Remark: ' can only be assumed to be in C 3s(Rn), even if b' is smooth.
Notice that �(u) := @{u = '} = b�(bu). We also define �1+s(u) = b�1+s(bu).
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Reduction of our main result: C 1,� regularity of �1+s(u)

Theorem (Garofalo, Petrosyan, Pop & Smit Vega Garcia, 2016)

Let s 2 (1/2, 1) and ' 2 C 3s(Rn). Let u solve (0.2) and x0 2 �1+s(u).
Then 9� 2 (0, 1) and ⌘ > 0, such that

B⌘(x0) \ �(u) ✓ �1+s(u),

and 9g 2 C 1,�(Rn�1), such that

B⌘(x0) \ �(u) = B⌘(x0) \ {xn  g(x 0)},

after a possible rotation in Rn.

Since b�1+s(bu) = �1+s(u), this implies the C 1,� regularity of b�1+s(bu), our
main result.
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Literature

Ca↵arelli, Salsa, Silvestre (2008): assuming ' 2 C 2,1(Rn):

C 1,� regularity of �1+s(u) (case of no drift).

Garofalo, Petrosyan, Pop & SVG: assuming ' 2 C 3s(Rn):

C 1,� regularity of �1+s(u) (case of no drift, which implies that b�1+s(bu) is
also C 1,�).
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Localize our problem

Let a := 1� 2s. Given v 2 C 2(Rn ⇥ R+), define the operator La as

Lav(x , y) = div(|y |arv)(x , y), 8 (x , y) 2 Rn ⇥ R+.

Why are we looking at this operator? If Law = 0, then

lim
y#0

|y |awy (x , y) = �(��)sw(x , 0),

i.e., (��)s is a Dirichlet-to-Neumann map for the operator La.
Given x0 2 �(u), define

vx0(x , y) := u(x , y)� '(x , y)� 1

2s
(��)s'(x0)|y |1�a,

where u(x , y),'(x , y) are the La-harmonic extensions of u(x) and '(x)
from Rn to Rn ⇥ R+.
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Localize our problem

Then

Lavx0 = 0 on Rn ⇥ (R \ {0}),
vx0 � 0 on Rn ⇥ {0},
Lavx0(x , y)  hx0(x)Hn|{y=0} on Rn+1,

Lavx0(x , y) = hx0(x)Hn|{y=0} on Rn+1 \ ({y = 0} \ {vx0 = 0}).

(0.3)

where hx0(x) := 2((��)s'(x)� (��)s'(x0)).
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Optimal regularity

Petrosyan & Pop (2016)

By means of a new monotonicity formula, established the optimal
C 1,s(Rn) regularity when s 2 (1/2, 1), b 2 C s(Rn;Rn), 0  c 2 C s(Rn),
b' 2 C 3s(Rn) \ C0(Rn).

Historical background: Almgren’s monotonicity formula

The crucial tool introduced to establish the regularity of bu is a
fundamental monotonicity formula proved in 1979 by F. Almgren, who
showed that if �u = 0 in B1, then the frequency of u, given by

r ! N(u, r) =
rD(r)

H(r)
=

r
R

Br
|ru|2

R

Sr
u2

,

is increasing in (0, 1). Furthermore, N(r) ⌘  () u is homogeneous of
degree , i.e., u(rx) = ru(x).
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The crucial tool introduced to establish the regularity of bu is a
fundamental monotonicity formula proved in 1979 by F. Almgren, who
showed that if �u = 0 in B1, then the frequency of u, given by

r ! N(u, r) =
rD(r)

H(r)
=

r
R

Br
|ru|2

R

Sr
u2

,

is increasing in (0, 1). Furthermore, N(r) ⌘  () u is homogeneous of
degree , i.e., u(rx) = ru(x).
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Crucial tool in the proof of the optimal regularity

Recall that

vx0(x , y) := u(x , y)� '(x , y)� 1

2s
(��)s'(x0)|y |1�a

Theorem (Monotonicity of the frequency)

Let s 2 (1/2, 1), ↵ 2 (1/2, s) and x0 2 �(u). Then 8p 2 [s,↵+ s � 1/2),
9C , �, r0 > 0 such that (0, r0) 3 r 7! eCr

�
�p
x0(r) %, where

�p
x0(r) := r

d

dr
logmax

n

Z

Sr

|vx0(x0 + ·)|2|y |1�2s , rn+3+2(p�s)
o

Moreover,

�p
x0(0+) 2

n

n + 3, n + 3 + 2(p � s)
o

[ [n + 5� 2s,1).
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The regular set

Definition (Regular point for u)

We say that x0 2 �(u) is regular if

�p
x0(0+) = n + 3, 8p 2 (s, 2s � 1/2).

We write �1+s(u) := {x0 2 �(u) | �p
x0(0+) = n + 3, 8p 2 (s, 2s � 1/2)}.

Definition (Regular point for bu)

We say that x0 2 b�(bu) is regular if x0 2 �1+s(u) and we denote the set of
regular points of bu as b�1+s(bu). (So �1+s(u) = b�1+s(bu))
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Regularity of the regular part of the free boundary

Garofalo, Petrosyan, Pop & Smit Vega Garcia, 2016:

�1+s(u) is locally a C 1,�-regular surface. As a consequence, the same
result holds for b�1+s(bu).

Our central results are:

a new Weiss type monotonicity formula and

a new epiperimetric inequality,

both inspired by those originally obtained by Weiss for the classical
obstacle problem.
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Spaces

Weighted Hölder spaces: let a 2 (0, 1), ⌦ ⇢ Rn ⇥ R+ an open set.
u 2 C 1(⌦) is in C 1,↵

a (⌦) if

||u||C↵(⌦) + ||uxi ||C↵(⌦) + |||y |a@yu||C↵(⌦) < 1.

Weighted Sobolev space: let U ⇢ Rn+1 be a Borel measurable set.
w 2 H1(U, |y |a) if w ,Dw 2 L2loc(U) and

Z

U
(|w |2 + |rw |2)|y |a < 1.
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Outline of our approach

1 First main ingredient consists of the “almost monotonicity” of a
Weiss-type functional which intuitively measures the closeness of the
solution v to the prototypical homogeneous solution of degree
(1 + s), i.e., the function

✓

xn +
q

x2n + y2
◆s ✓

xn � s
q

x2n + y2
◆

2 The second central ingredient is an epiperimetric inequality for the
Weiss functional.

The combination of these results provides us with a powerful tool to
establish a geometric rate of decay for the Weiss functional, which in turn
allows us to study the homogeneous blowups of v , vr (x , y) =

v(rx ,ry)
r1+s , and

prove the C 1,� regularity of �1+s(u).
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In more detail

Given x0 2 �1+s(u), our goals will be to prove that:

The homogeneous rescalings

vx0,r (x , y) =
vx0(x0 + rx , ry)

r1+s

converge to a (unique) solution of (0.3) with hx0 substituted by 0,
which is homogeneous of degree (1 + s).

We can express the unique homogeneous blowup at x0, vx0,0(x , y), as

ax0

✓

hx , ex0i+
q

hx , ex0i2 + y2
◆s ✓

hx , ex0i � s
q

hx , ex0i2 + y2
◆

,

for some ex0 2 S 0
1. Moreover, vx0,0 is nonzero.
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In more detail

To prove C 1,� regularity of �1+s(u):
|ax̄ � aȳ |  C |x̄ � ȳ |� , |ex̄ � eȳ |  C |x̄ � ȳ |� .

To obtain the last inequalities we first prove that 9⌘0 = ⌘0(x0) > 0 such
that

Z

S1

�

�

�

vx̄ ,0 � vȳ ,0

�

�

�

|y |a  C |x̄ � ȳ |� for x̄ , ȳ 2 B 0
⌘0(x0) \ �(u),

where C and � > 0 are universal constants.
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First main ingredient: Weiss type monotonicity formula

Weiss type functional:

WL(v , r , x0) = WL(r)

=
1

rn+2

"

Z

Br

|rvx0 |2|y |a +
Z

B0
r

vx0hx0

#

� 1 + s

rn+3

Z

Sr

|vx0(x0 + ·)|2|y |a.
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First main ingredient: Weiss type monotonicity formula

Theorem (Garofalo, Petrosyan, Pop & Smit Vega Garcia, 2016)

Assume x0 2 �1+s(u). There exists a universal constant C > 0 such that

d

dr

�

WL(v , r) + Cr2s�1
� � 2

rn+2

Z

Sr

✓

hrvx0 , ⌫i �
(1 + s)vx0

r

◆2

|y |a.
(0.4)

Hence, r 7! WL(v , r) + Cr2s�1 is %, so the following limit exists:

WL(v , 0+)
def
= lim

r!0
WL(v , r).
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Blow-ups

We recall the definition of the homogeneous rescallings of v :

vr (x , y) =
v(rx , ry)

r1+s
.

Lemma (Convergence to blow-ups)

Let 0 2 �1+s(u). Given rj ! 0, 9v0 2 C 1,↵
a,loc((Rn)± [ {y = 0}), 8↵ 2 (0, 1),

such that
vrj ! v0 in C 1,↵

a,loc((R
n)± [ {y = 0}).

v0 satisfies (0.3) with hx0 substituted by 0, and it is homogeneous of
degree (1 + s).

We still do not have: uniqueness of the blow up, v0 6= 0 and a rate of
convergence of the recallings to the blow-ups.
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Second main ingredient: Epiperimetric inequality

Let

bv0(x , y) :=

✓

xn +
q

x2n + y2
◆s ✓

xn � s
q

x2n + y2
◆

.

When hx0 ⌘ 0 and r = 1, our Weiss functional takes an easier form:

WL(v) := WL(v , 1) =

Z

B1

|rv |2|y |a � (1 + s)

Z

S1

v2|y |adHn�1.

Theorem (Garofalo, Petrosyan, Pop & Smit Vega Garcia, 2016)

There exists , ✓ 2 (0, 1) such that if w 2 H1(B1, |y |a) is homogeneous of
degree (1 + s), w � 0 on B 0

1 and kw � bv0kH1(B1,|y |a)  ✓, then there exists

⇣ 2 H1(B1, |y |a) such that ⇣ = w on S1, ⇣ � 0 on B 0
1 and

WL(⇣)  (1� )WL(w).
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To recall is to live :)

Recall that our goal is to prove that 9⌘0 = ⌘0(x0) > 0 such that

Z

S1

�

�

�

vx̄ ,0 � vȳ ,0

�

�

�

|y |a  C |x̄ � ȳ |� for x̄ , ȳ 2 B 0
⌘0(x0) \ �(u),

where C and � > 0 are universal constants.
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Uniqueness of blowups (for points close to x0 2 �1+s(u))

Let r > 0, x0 2 �1+s(u), vx0,r (x , y) =
vx0 (x0+rx ,ry)

r1+s .

Proposition

There exist constants r0 = r0(x0), ⌘0 = ⌘0(x0) > 0 such that

�(u) \ B 0
⌘0(x0) ⇢ �1+s(u).

Moreover, if vx̄ ,0 is any blow up of v at x̄ 2 �(u) \ B 0
⌘0(x0), then

Z

S1

|vx̄ ,r � vx̄ ,0||y |a  Cr� , for all r 2 (0, r0),

where C > 0 and � 2 (0, 1) are universal constants. In particular, the
blow-up limit vx̄ ,0 is unique.

The main ingredient in the proof is the fact that WL(v , r)  Cr� , which is
proved by using the epiperimetric inequality.
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And we get something more!

We can actually show that

For some ex̄ 2 S 0
1,

vx̄ ,0(x) = ax̄
⇣

hx , ex̄i+
phx , ex̄i2 + y2

⌘s ⇣hx , ex̄i � s
phx , ex̄i2 + y2

⌘

.

The unique blowup vx̄ ,0 above is nonzero.
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Analysing blowups for x̄ , ȳ 2 �(u) close to x0 2 �1+s(u)

Proposition

Assume x0 2 �1+s(u). Then, there exists ⌘0 = ⌘0(x0) > 0 such that

Z

S1

|vx̄ ,0 � vȳ ,0||y |a  C |x̄ � ȳ |� for x̄ , ȳ 2 B 0
⌘0(x0) \ �(u),

where C and � > 0 are universal constants.
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C

1,� regularity of the regular free boundary

Theorem (Garofalo, Petrosyan, Pop & Smit Vega Garcia, 2016)

Let s 2 (1/2, 1), b 2 C s(Rn;Rn), 0  c 2 C s(Rn) and
b' 2 C 3s(Rn) \ C0(Rn). Let bu 2 C 1,s(Rn) solve (0.1) and x0 2 b�1+s(bu).
Then 9� 2 (0, 1) and ⌘ > 0, such that

B 0
⌘(x0) \ b�(bu) ✓ b�1+s(bu),

and 9g 2 C 1,�(Rn�1), such that

B 0
⌘(x0) \ b�(bu) = B 0

⌘(x0) \ {xn  g(x 0)},

after a possible rotation in Rn.
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Thank you!
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