MSRI LECTURE ON MICROLOCAL ANALYSIS AND INVERSE PROBLEMS

LECTURER: GUNTHER UHLMANN

ABSTRACT. Rough notes for the lecture on microlocal analysis and inverse problems at the MSRI introductory workshop in Fall 2019.

- Question: Can we determine internal properties of a medium by measurements on the boundary?
- Two types of scattering:
 - Linear: propagation independent of the medium
 - Nonlinear: propagation along curves determined by medium
- Hybrid methods: superposition of two images obtained by a single wave
- Model:
 - Consider $u_{tt} c^2(x)\Delta u = 0$
 - Solve the inverse problem $u|_{t=0} = \beta H(x)$ and $\partial_t u|_{t=0} = 0$
 - Reconstruct H
- Simple case:
 - Consider for $q \in C_c^{\infty}(\mathbb{R}^n)$ with support contained in $B_R(0)$,

$$\begin{cases}
 u_{tt} - \Delta u + qu = 0 \\
 u = (t - x \cdot w), \ t < -R
\end{cases}$$
(1)

- Inverse problem: Assuming we know $u(t, x \cdot w)$ for $t \gg 1$, can we recover q?
 - * $\Box \delta(t x \cdot w) = 0$ and $(\Box + q)\delta(t x \cdot w) = q\delta(t x \cdot w)$
 - * Next try: $u_1(t, x \cdot w) = \delta(t x \cdot w) + a_1(x, w)H(t x \cdot w)$ where H is Heaviside function
 - * Obtain $(\Box + q)u_1 = (q + 2\nabla a_1 \cdot w)\delta(t x \cdot w) + (qa_1 \Delta a_1)H(t x \cdot w)$
 - * First term being zero tells us $a_1(x,w) = -\frac{1}{2} \int_{-\infty}^{x \cdot w} q(x + (s x \cdot w)w) ds$
 - * If $x \cdot w > R$, then a_1 is the X-ray transform of $-\frac{q}{2}$
 - · X-ray transform:

$$If(x,w) = \int f(x+sw)ds$$

for
$$f \in C_0^{\infty}(\mathbb{R}^n)$$

- * Next try: $u_2 = \delta(t x \cdot w) + a_1(x, w)H(t x \cdot w) + a_2(x, w)(t x \cdot w)$
- * $\overline{\text{Yields } \nabla} a_2 \cdot w = -\frac{1}{2} (q(x) a_1 \Delta a_1)$

* This yields overall

$$u = \delta(t - x \cdot w) + \sum_{j=0}^{N} a_{j+1}(x, w)(t - x \cdot w) + C^{N-2}(\mathbb{R}_{x}^{n} \times \mathbb{R}_{t})$$

which is a conormal distribution on $\{t = x \cdot w\}$.

- * Principal symbol determines X-ray transform of q
- * Transpose of X-ray:

$$I^*f(x) = \int_{S^{n-1}} f(x - (x \cdot w)w, w)dw$$

- * $I^*I = (-\Delta)^{1/2}$ which implies $(-\Delta)^{-1/2}I^*If = f$ for $f \in \mathcal{E}'(\mathbb{R}^n)$ · Non-local inversion formula
- * Thus $WF((-\Delta)^{1/2}f) = WF(f)$
- Example: $f = \sum_{i=1}^{2} a_i(x) \chi_{\Omega_i}$, Ω_i disjoint bounded domains.
 - * Where are singularities of f?
 - * Look at the symbol
- Acoustic Wave Equation:
 - $-\Omega$ a bounded domain contained in a medium with c(x)=1 for $x \notin \Omega$
 - Consider

$$\begin{cases} u_{tt} - c(x)\Delta u + qu = 0\\ u = (t - x \cdot w) \end{cases}$$
 (2)

- Inverse problem: If we know $u(t, x \cdot w)$ for $t \gg 1$, can we recover c? * We get the expansion

$$u(t, x, w) = A_0(x, w)\delta(t - \phi(x, w)) + A_1(x, w)H(t - \phi(x, w)) + \sum_{j=1}^{\infty} A_{j+1}(x, w)(t - \phi(x, w))^j + C^{\infty}$$

$$-\frac{\text{Eikonal equation:}}{* (1-c^2(x)|\nabla_x \phi|^2)} \delta''(t-x\cdot w) \text{ yields}$$

$$\begin{cases} |\nabla_x \phi|^2 = \frac{1}{c^2(x)} \\ \phi(x, w) = x \cdot w, \ x \cdot w < -R \end{cases}$$
 (3)

- * Solve using Hamilton-Jacobi theory
- Transport equation:
 - Eliminate $\delta'(t-\phi(x,w))$ via

$$\begin{cases}
2c(x)\nabla_x\phi\cdot\nabla A_0 - c^2(x)\Delta\phi A_0 = 0 \\
A_0 = 1, \ x\cdot w < -R
\end{cases} \tag{4}$$

- Boundary Rigidity:
 - Suppose we know $\phi(x, w)$, the geodesic distance.
 - Can we recover c?

- -M bounded, $c \in C^{\infty}(M)$, smooth boundary
- $-d_c(x,y) = \inf L(\sigma)$ where $L(\sigma) = \int_0^1 \frac{1}{c} |\frac{d\sigma}{dt}| dt$ σ a curve
- Determine c knowing d_c

Definition 0.1. (M,c) is <u>simple</u> if for every $x,y \in \partial M$, there exists a unique minimal geodesic joining x to y and ∂M is strictly convex.

Theorem 1. One can determine c uniquely and stably from d_c if (M,c) is simple.

Theorem 2. Know u for t > R. Can determine c if (B(0,R),c) is simple.

Theorem 3. Assume the map $T_x^*X \to X$ given by $v \mapsto \gamma(x, v)$, where $\gamma(x, y)$ is the geodesic starting at $x \in X$ with tangent v is a diffeomorphism. Then $I_c^*I_c$, the geodesic X-ray transform, is an elliptic ΨDO .