MSRI LECTURES ON GEOMETRIC MICROLOCAL ANALYSIS
LECTURE 1

LECTURER: RAFAEL MAZZEOTI

ABSTRACT. Rough notes for lectures on geometric microlocal analysis at the MSRI introductory workshop in Fall 2019.

• Plan for this Lecture Series:
 (1) What is geometric microlocal analysis? Generalities plus a case study.
 (2) Further details about the case study
 (3) Further examples.
• Aphorisms:
 (1) When in doubt, compactify.
 (2) If you are still in doubt, blow something up.
 (3) Smoothness is not what it seems.
• We want to study PDEs on space which are:
 (1) Noncompact, complete manifolds with tame geometry at infinity like \mathbb{R}^n and \mathbb{H}^n.
 (2) Singular spaces like cones, edges, stratified spaces, etc.
 (3) Spaces or operators which are degenerating; adiabatic limits, neck stretching, geometric gluing, etc.
• Examples of singular spaces: level sets of Morse functions; algebraic varieties; compactification of moduli spaces; compactification of locally symmetric spaces.
• Focus on elliptic operators: $L = \sum_{|\alpha| \leq m} a_\alpha(z) D_x^\alpha$. The principal symbol equals $\sigma_m(L)(z, \xi) = \sum_{|\alpha| = m} a_\alpha(z) \xi^\alpha$, and ellipticity means that this is invertible when $\xi \neq 0$.
• A priori estimates vs. parametrices:
 – The classical Sobolev estimates for an elliptic operator $\|u\|_{H^{s+m}} \leq (\|Lu\|_{H^s} + \|u\|_0)$ (strictly speaking, the norm on the left should be over a domain which is smaller than the one used on the right;
 – A parametrix for L is an approximate inverse, namely a pseudodifferential operator $G \in \Psi^{-m}$ such that $LG = I - R_1$, $GL = I - R_2$ where the two operators $R_1, R_2 \in \Psi^{-\infty}$ are ‘residual’.

Existence of a pseudodifferential parametrix and knowledge of its mapping properties imply the Sobolev estimates:
* $Lu = f$ implies $u - R_1 u = Gf$, which gives $\|u\|_{H^{s+m}} \leq C(\|f\|_{H^s} + \|u\|_0)$ since $G : H^s \to H^{s+m}$ is bounded and $R_1 : H^t \to H^t$ is bounded for all t, t'

- One can use the a priori estimates plus a bit of functional analysis to deduce the existence of a (generalized) inverse for L, i.e., an inverse up to finite rank errors (the projects onto the kernel and cokernel). However, this does not tell you the structure of this generalized inverse.

- **Our goal:** a global theory of parametrices:
 - L a differential operator on manifold M, G a parametrix for L with $G(z, z') \in D'(M \times M)$ its Schwartz kernel.
 - We care about the geometric structure of G
 - After compactifying, things become interesting at the boundary

- **Singular integral operators** $\frac{F(z)}{|z|^n}, \int_{S^{n-1}} F = 0$.
 - Oscillatory integral representation of ΨDOs
 - Melrose and collaborators led to Schwartz kernels

- **Hadamard Parametrix Construction:** (due to Friedlander)
 - Given L, find the parametrix G, $G \sim \sum_{j=0}^{\infty} G_j$ with $LG_0 = I - R_0$
 - If $L = \sum_{|\alpha|=m} a_\alpha (z_0) D_\alpha^2$; $G_0 (z, \bar{z}) = \mathcal{F}^{-1} \left(\frac{1}{\sum_{|\alpha|=m} a_\alpha (z_0) \xi^\alpha} \right)$
 - For χ a suitable cutoff function, this is
 $$\int e^{i(z-\bar{z}) \cdot \xi} \frac{\chi(\xi)}{\sum_{|\alpha|=m} a_\alpha (z_0) \xi^\alpha} d\xi$$
 - For instance, if $m = 2$ and $L = \Delta$, then $\mathcal{F}^{-1} \left(\frac{1}{\xi^2} \right) = \frac{1}{|z - \bar{z}|^{n-2}}$
 - $LG_0 = I +$ error and $G_0 (z, \bar{z}) \sim a_0 (z) d(z, \bar{z})^{m-n}$
 - $LG_0 = I - R_0 (z, \bar{z})$, $R_0 (z, \bar{z}) \sim d(z, \bar{z})^{-m}$
 - $L(G_0 + \ldots + G_N) = I - R_N, R_N \sim d(z, \bar{z})^{-n+N+1} + C^\infty (M \times M)$.
 - Want an asymptotic sum: $G \sim \sum G_j, LG = I - \tilde{R}; \tilde{R} \in C^\infty (M \times M)$.
 - In this construction, any M works but if M is open or singular, then \tilde{R} is not necessarily a compact operator.
 - $G^* L = I - \tilde{R}^t; \tilde{R}^t : \mathcal{E}'(M) \to C^\infty (M)$ does not improve growth.

- **Turn our attention to \mathbb{H}^n**:
 - Metric in half-space model:
 $$\frac{dx^2 + dy^2}{x^2}$$
 - Metric in Poincaré disk:
 $$\frac{4|dz|^2}{(1 - |z|^2)^2}$$
Metric in Klein model:
\[\frac{4(\sum z_j dz_j^2)}{(1 - |z|^2)^2} + \frac{4|dz|^2}{1 - |z|^2} \]
(3)

Laplacian in half-space:
\[\Delta_y = x^2 \partial^2_x + (2 - n)x \partial_x + x^2 \Delta_y \]
(4)
which degenerates at \(x = 0 \).

Laplacian in Poincaré:
\[\Delta_g = (1 - |z|^2)^2 \Delta_x - 2(2 - n) \sum z_i \partial z_i \]
(5)

\((M, g) \) conformally compact with \(g = \rho^{-2} \bar{g}, \rho = 0 \) on \(\partial M, d\rho \neq 0 \).

\((r, \theta) \) on \(\mathbb{H}^n \) with \(r \) distance from origin and \(\theta \in S^{n-1} \),
\[g = dr^2 + \sinh^2(r) d\theta^2 \]
(6)
and
\[\Delta = \sinh^{1-n} r \partial_r (\sinh^{n-1} r \partial_r) + \frac{1}{\sinh^2 r} \Delta_\theta \]
(7)

Want to solve
\[G'' + (n - 1) \frac{\cosh r}{\sinh r} G' = 0, \quad r > 0 \]
(8)

Thus, either \(G \sim r^0, r^{2-n} \).

With \(\rho = e^{-r} \), we have \(G \sim \rho^{n-1} \) as \(\rho \to 0 \), i.e., \(r \to \infty \).

At the boundary of \(M \times M \) compactified we have nice expansions with \(G \sim r^{2-n} \) toward the diagonal.

What happens at the corners of the diagonal?

 Blow up the corner along the diagonal

Dilation invariant: \(G(x, y, \tilde{x}, \tilde{y}) = G(\lambda x, \lambda y, \lambda \tilde{x}, \lambda \tilde{y}) \)

How to localize?

\(\mathbb{H}^n \setminus \Omega, \Delta + V, V \in C_0^\infty \), define \(\tilde{G} = \tilde{\chi}_1 G_{in} \chi_1 + \tilde{\chi}_2 G_{out} \chi_2 \) where \(\chi_1, \tilde{\chi}_1 \) compactly supported in \(U_1 \) and \(\chi_2, \tilde{\chi}_2 \) compactly supported in \(U_2 \) where \(\Omega \subset U_1 \subset U_2 \).

\(G_{out} = G_{\mathbb{H}^n}, G_{in} = \text{standard local } \Psi \text{DO}. \)

Want to obtain local parametrices and glue them together.