Simply connected wandering domains

Vasiliki Evdoridou

MSRI

Connections Workshop
February 4, 2022
Let $f : \mathbb{C} \to \mathbb{C}$ be a transcendental entire function.
Let $f : \mathbb{C} \to \mathbb{C}$ be a transcendental entire function.

We denote by f^n the n-th iterate of f, that is

$$f^n = f \circ \cdots \circ f$$

n times
Let $f : \mathbb{C} \to \mathbb{C}$ be a transcendental entire function.

We denote by f^n the n-th iterate of f, that is

$$f^n = f \circ \cdots \circ f \quad \text{n times}$$

Considering the iterates of f there is a natural division of the complex plane into two completely invariant sets, the Fatou set and the Julia set.
Let $f : \mathbb{C} \to \mathbb{C}$ be a transcendental entire function.

We denote by f^n the n-th iterate of f, that is

$$f^n = f \circ \cdots \circ f \quad \text{n times}$$

Considering the iterates of f there is a natural division of the complex plane into two completely invariant sets, the Fatou set and the Julia set.

$$F(f) = \{ z \in \mathbb{C} : \{ f^n(z) \} \text{ is normal in a neighbourhood of } z \}$$

$$J(f) = \mathbb{C} \setminus F(f)$$
Let $f : \mathbb{C} \to \mathbb{C}$ be a transcendental entire function.

We denote by f^n the n-th iterate of f, that is

$$f^n = \underbrace{f \circ \cdots \circ f}_{n \text{ times}}$$

Considering the iterates of f there is a natural division of the complex plane into two completely invariant sets, the Fatou set and the Julia set.

$$F(f) = \{ z \in \mathbb{C} : \{ f^n(z) \} \text{ is normal in a neighbourhood of } z \}$$

$$J(f) = \mathbb{C} \setminus F(f)$$

The connected components of the Fatou set, which map into each other, are called **Fatou components**.
Fatou components can be:

periodic
Fatou components can be:

- **periodic**

- **preperiodic**
Fatou components can be:

- **Periodic**

- **Preperiodic**

- **Wandering domains**
Definition
Let U be a Fatou component of f. If $f^n(U) \cap f^m(U) = \emptyset$, for all $m, n \in \mathbb{N}$, with $m \neq n$ then U is a wandering domain.
An example of a wandering domain

Figure 1: The dynamics of the function $f(z) = z + 2\pi \sin z$ (picture by Lasse Rempe).
Three types of wandering domains

Wandering domains are classified into three types with respect to escape to infinity.

1. **Escaping**
 \[f_n(z) \to \infty \quad \text{for all} \quad z \in U \]

2. **Oscillating**
 \[f_{n_k}(z) \to \infty \quad \text{and} \quad f_{m_k}(z) \text{ stays bounded for all} \quad z \in U \]

3. **Bounded (orbit)**
 \[f_n(z) \text{ stays bounded for all} \quad z \in U \]
Three types of wandering domains

Wandering domains are classified into three types with respect to escape to infinity.

- **Escaping**, if $f^n(z) \to \infty$ for all $z \in U$

- **Oscillating**, if there exist $(n_k), (m_k)$ such that $f^{n_k}(z) \to \infty$ and $(f^{m_k}(z))$ stays bounded for all $z \in U$.

- **Bounded (orbit)** if $(f^n(z))$ stays bounded for all $z \in U$.

Wandering domains are classified into three types with respect to escape to infinity.

Escaping, if \(f^n(z) \to \infty \) for all \(z \in U \)

Oscillating, if there exist \((n_k), (m_k)\) such that \(f^{n_k}(z) \to \infty \) and \((f^{m_k}(z)) \) stays bounded for all \(z \in U \).
Wandering domains are classified into three types with respect to escape to infinity.

- **Escaping**, if \(f^n(z) \to \infty \) for all \(z \in U \)

- **Oscillating**, if there exist \((n_k), (m_k)\) such that \(f^{n_k}(z) \to \infty \) and \(f^{m_k}(z) \) stays bounded for all \(z \in U \);

- **Bounded (orbit)** if \((f^n(z)) \) stays bounded for all \(z \in U \).
Early results

Theorem (Sullivan 1984) Wandering domains do not exist for rational maps.
Early results

Theorem (Sullivan 1984) Wandering domains do not exist for rational maps.

Baker (1984) was the first to give an example of a transcendental entire function with a wandering domain. The wandering domain in Baker’s example was multiply connected.
Theorem (Sullivan 1984) Wandering domains do not exist for rational maps.

Baker (1984) was the first to give an example of a transcendental entire function with a wandering domain. The wandering domain in Baker’s example was multiply connected.

A detailed description of the dynamics in multiply connected wandering domains was given by Bergweiler, Rippon and Stallard in 2011.
Why wandering domains?

In recent years, there is an increased interest in the study of wandering domains.
Why wandering domains?

In recent years, there is an increased interest in the study of wandering domains.

- Wandering domains are the least understood of all Fatou components.
Why wandering domains?

In recent years, there is an increased interest in the study of wandering domains.

- Wandering domains are the least understood of all Fatou components.
- There are several big open questions in Holomorphic Dynamics concerning wandering domains.
This project is in collaboration with
Our project

This project is in collaboration with

Anna Miriam Benini
University of Parma

Nuria Fagella
University of Barcelona

Phil Rippon
The Open University

Gwyneth Stallard
The Open University
We studied the *internal* dynamics in simply connected wandering domains.

We obtained a nine-way classification of simply connected wandering domains.
We studied the *internal* dynamics in simply connected wandering domains.

We obtained a nine-way classification of simply connected wandering domains:

- in terms of hyperbolic distances between orbits of points and
- in terms of converging to the boundary.
First classification theorem

Theorem. Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.
Theorem. Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

1. U is **contracting**: for all such pairs $z, w \in U$, $d_{U_n}(f_n(z), f_n(w))$ decreases to 0.
Theorem. Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

1. U is contracting: for all such pairs $z, w \in U$,
 \[d_{U_n}(f_n(z), f_n(w)) \] decreases to 0.

2. U is semi-contracting: for all such pairs $z, w \in U$,
 \[d_{U_n}(f_n(z), f_n(w)) \] decreases to $c(z, w) > 0$.

Theorem. Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

1. U is **contracting**: for all such pairs $z, w \in U$, $d_{U_n}(f_n(z), f_n(w))$ decreases to 0.

2. U is **semi-contracting**: for all such pairs $z, w \in U$, $d_{U_n}(f_n(z), f_n(w))$ decreases to $c(z, w) > 0$.

3. U is **eventually isometric**: for all such pairs $z, w \in U$, $d_{U_n}(f_n(z), f_n(w))$ is eventually constant.
Idea of the proof

\[U_0 \xrightarrow{f} U_1 \xrightarrow{f} \ldots \xrightarrow{f} U_{n-1} \xrightarrow{f} U_n \]

\[\phi_0 \downarrow \quad \phi_1 \downarrow \quad \phi_{n-1} \downarrow \quad \phi_n \downarrow \]

\[0 \xrightarrow{g_1} 0 \xrightarrow{g_2} \ldots \xrightarrow{g_{n-1}} 0 \xrightarrow{g_n} 0 \]

\[D \xrightarrow{D} D \xrightarrow{D} \ldots \xrightarrow{D} D \xrightarrow{D} D \]

\[G_n \]

\[\hat{d} U_n(\tilde{f}_n(z_0), \tilde{f}_n(z_0)) = \hat{d} D(G_n(w), G_n(w)) \rightarrow 0 \Rightarrow \hat{d} D(G_n(w), G_n(w)) \rightarrow 0 \]
Idea of the proof

\[U_0 \xrightarrow{\phi_0} U_1 \xrightarrow{\phi_1} \cdots \xrightarrow{\phi_{n-1}} U_{n-1} \xrightarrow{\phi_n} U_n \]

\[\hat{d} U_n(f_n(z), f_n(z_0)) = \hat{d} \mathbb{D}(G_n(w), 0) \]

\[\hat{d} \mathbb{D}(G_n(w), 0) \rightarrow 0 \Rightarrow \hat{d} \mathbb{D}(G_n(w), G_n(w')) \rightarrow 0 \]
Second classification theorem

Theorem. Let U be a simply connected wandering domain. Then there are three possibilities.

(a) away For all $z \in U$, $f_n(z)$ stays away from ∂U_n;
Theorem. Let U be a simply connected wandering domain. Then there are three possibilities.

(a) away For all $z \in U$, $f_n(z)$ stays away from ∂U_n;

(b) bungee For all $z \in U$, there is a subsequence $f_{n_k}(z)$ which converges to ∂U_{n_k} and a subsequence which stays away;
Theorem. Let U be a simply connected wandering domain. Then there are three possibilities.

(a) **away** For all $z \in U$, $f_n(z)$ stays away from ∂U_n;

(b) **bungee** For all $z \in U$, there is a subsequence $f_{n_k}(z)$ which converges to ∂U_{n_k} and a subsequence which stays away; or

(c) **converging** For all $z \in U$, $f_n(z)$ converges to ∂U_n.
The behaviour of two points/one point in the wandering domain determines the type of the wandering domain with respect to the first/second classification.
The behaviour of two points/one point in the wandering domain determines the type of the wandering domain with respect to the first/second classification.

For example, if the orbit of one point converges to the boundary of the wandering domain then all internal orbits do.
Possible types of wandering domains

The two classification theorems give rise to 9 possible types of escaping simply connected wandering domains, only 3 of which were known to exist before.
The two classification theorems give rise to 9 possible types of escaping simply connected wandering domains, only 3 of which were known to exist before.

<table>
<thead>
<tr>
<th>type</th>
<th>away</th>
<th>bungee</th>
<th>converging</th>
</tr>
</thead>
<tbody>
<tr>
<td>contracting</td>
<td>✗</td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>semi-contracting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eventually isometric</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A wandering domain coming from a lift

Figure 2: The dynamics of the function $f(z) = z + 2\pi + \sin z$ (picture by David Martí-Pete).

The function $g(z) = z \exp\left(\frac{1}{2}\left(\frac{1}{z} - z\right)\right)$ has a superattracting basin, which lifts to a sequence of wandering domains.
All types are realisable!

<table>
<thead>
<tr>
<th>type</th>
<th>away</th>
<th>bungee</th>
<th>converging</th>
</tr>
</thead>
<tbody>
<tr>
<td>contracting</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>semi-contracting</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>eventually isometric</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
All our examples were constructed using techniques from Approximation Theory.
All our examples were constructed using techniques from Approximation Theory.

This technique allowed us to construct a variety of escaping and oscillating wandering domains.
All our examples were constructed using techniques from Approximation Theory.

This technique allowed us to construct a variety of escaping and oscillating wandering domains.

More on this construction, as well as a recent exciting construction by Martí-Pete, Rempe and Waterman will be presented during the mini-course ‘Approximation in Transcendental Dynamics’.
More recently, we studied the behaviour of boundary points of simply connected wandering domains in terms of convergence.
More recently, we studied the behaviour of boundary points of simply connected wandering domains in terms of convergence. We were motivated by questions on how to relate the convergence of boundary orbits to internal orbits converging to the boundary of the wandering domain.
More recently, we studied the behaviour of boundary points of simply connected wandering domains in terms of convergence. We were motivated by questions on how to relate the convergence of boundary orbits to internal orbits converging to the boundary of the wandering domain.

You will hear all about this work in Nuria’s talk at the Introductory workshop.
THANK YOU