Boundary regularity of area-minimizing currents: a linear model with analytic interface

Zihui Zhao
joint work with Camillo De Lellis

University of Chicago

MSRI Hot Topics Workshop:
Regularity Theory for Minimal Surfaces and Mean Curvature Flow
Plateau’s problem: Given a closed curve Γ, what is the surface T that spans Γ with the least area?

Figure: Soap film. Photo credit: archdaily.com
Depending on what class of surfaces we are minimizing,
Depending on what class of surfaces we are minimizing, there are different formulations of Plateau’s problem:

- Classical area-minimizing surfaces using the parametric approach (as images of a disk, or surfaces of higher genus Σ_g), *Douglas, Radó, Courant et al.*
Depending on what class of surfaces we are minimizing, there are different formulations of Plateau’s problem:

- Classical area-minimizing surfaces using the parametric approach (as images of a disk, or surfaces of higher genus Σ_g), Douglas, Radó, Courant et al.
- Integral currents, Federer-Fleming et al.
- Set-theoretic approach, Reifenberg, Harrison-Pugh, David et al.
- Integral varifolds, Almgren, Allard et al.
Integral currents: model orientable submanifolds

In 1960 Federer and Fleming introduced the notion of integral current and proved the existence of area-minimizers in this class.

Definition

We say a current $T \subset \mathbb{R}^{m+n}$ of dimension m is integer rectifiable, if there are

- countably m-dimensional orientable C^1 submanifolds $M_i \subset \mathbb{R}^{m+n}$,
- pairwise disjoint closed sets $A_i \subset M_i$,
- positive integers $k_i \in \mathbb{N}$,

such that

$$T = \sum_i k_i [A_i], \quad \text{modulo a set of zero } \mathcal{H}^m\text{-measure}.$$

We say a current T is integral if both T and its boundary ∂T are integer rectifiable.
Area-minimizing current

Definition (Area-minimizing current)

Let T be an m-dimensional integral current in \mathbb{R}^{m+n} (or in a Riemannian manifold M^{m+n}). We say T is area minimizing, if

$$\text{Area}(T') \geq \text{Area}(T)$$

for any competitor T' of T, that is, T' is an integral current such that $T' = T$ outside of some compact set.
Interior regularity: codimension one ($n = 1$)

Theorem (De Giorgi, Simons, Federer, Simon et al.)

Assume T is an area-minimizing current and $n = 1$. Then

1. If $2 \leq m \leq 6$, T is regular, i.e. $\text{Sing}_i(T) = \emptyset$.
2. If $m = 7$, $\text{Sing}_i(T)$ consists of isolated points.
3. If $m > 7$, $\text{Sing}_i(T)$ has Hausdorff dimension at most $m - 7$, and it is $(m - 7)$-rectifiable.
When the codimension $n \geq 2$, branch point starts to emerge.

Example of branch singularity. The holomorphic curve

$$C := \{(z, w) \in \mathbb{C}^2 : z^2 = w^3\}$$

is a 2-dimensional area-minimizing current in \mathbb{R}^4. The origin is singular despite that C has a flat tangent plane $\{(z, w) \in \mathbb{C}^2 : z = 0\}$ at the origin.
Theorem (Almgren, Chang, DeLellis-Spadaro, DeLellis-Spadaro-Spolaor)

Assume T is an area-minimizing current and $n \geq 2$. Then

1. When $m = 2$, $\text{Sing}_i(T)$ consists of isolated points.
2. $\text{Sing}_i(T)$ has Hausdorff dimension at most $m - 2$.
Theorem (Almgren, Chang, DeLellis-Spadaro, DeLellis-Spadaro-Spolaor)

Assume T is an area-minimizing current and $n \geq 2$. Then

1. When $m = 2$, $\text{Sing}_i(T)$ consists of isolated points.
2. $\text{Sing}_i(T)$ has Hausdorff dimension at most $m - 2$.

Remark

- In particular, if T is a two-dimensional area-minimizing current, then locally $\text{spt}(T)$ is a branched minimal surface.
Theorem (Almgren, Chang, DeLellis-Spadaro, DeLellis-Spadaro-Spolaor)

Assume T is an area-minimizing current and $n \geq 2$. Then

1. When $m = 2$, $\text{Sing}_i(T)$ consists of isolated points.
2. $\text{Sing}_i(T)$ has Hausdorff dimension at most $m - 2$.

Remark

- In particular, if T is a two-dimensional area-minimizing current, then locally $\text{spt}(T)$ is a branched minimal surface.
- By a dimension reduction argument, it suffices to study flat singular points.
Almgren’s proof of interior regularity

Near a flat singular point p, approximate the current T locally by the graph of a multi-valued function

$$f : \mathbb{D} \subset \mathbb{R}^m \to \mathcal{A}_Q(\mathbb{R}^n)$$

where $\mathcal{A}_Q(\mathbb{R}^n)$ is the metric space of unordered Q-tuples of points in \mathbb{R}^n, and the integer Q equals $\Theta(T, p) := \lim_{s \to 0} \frac{\|T\|(B_s(p))}{\omega_m s^m}$.
Almgren’s proof of interior regularity

1. Near a flat singular point p, approximate the current T locally by the graph of a multi-valued function

$$f : \mathbb{D} \subset \mathbb{R}^m \rightarrow \mathcal{A}_Q(\mathbb{R}^n)$$

2. If the current T is area-minimizing, f is close to be a minimizer of the Dirichlet energy $\text{Dir}(f, \mathbb{D}) := \int_{\mathbb{D}} |Df|^2$.
Almgren’s proof of interior regularity

Near a flat singular point p, approximate the current T locally by the graph of a multi-valued function

$$f : \mathbb{D} \subset \mathbb{R}^m \to A_Q(\mathbb{R}^n)$$

If the current T is area-minimizing, f is close to be a minimizer of the Dirichlet energy $\text{Dir}(f, \mathbb{D}) := \int_{\mathbb{D}} |Df|^2$.

The reason is that

$$\|T\|(C_r(x)) - Q \cdot \omega_m r^m \approx \frac{1}{2} \int_{B_r(x)} |Df|^2,$$

where $C_r(x)$ denotes the cylinder $B_r(x) \times \mathbb{R}^n \subset \mathbb{D} \times \mathbb{R}^n$.

Construct the central manifold, to make sure singularity does not disappear after the blow-up.

Prove analogous regularity result for multi-valued functions which minimize the Dirichlet energy.
Almgren’s proof of interior regularity

1. Near a flat singular point p, approximate the current T locally by the graph of a multi-valued function

 $f : \mathcal{D} \subset \mathbb{R}^m \to A_Q(\mathbb{R}^n)$

2. If the current T is area-minimizing, f is close to be a minimizer of the Dirichlet energy $\text{Dir}(f, \mathcal{D}) := \int_{\mathcal{D}} |Df|^2$.

4. Prove analogous regularity result for multi-valued functions which minimize the Dirichlet energy.
Almgren’s proof of interior regularity

1. Near a flat singular point \(p \), approximate the current \(T \) locally by the graph of a multi-valued function

\[
f : \mathbb{D} \subset \mathbb{R}^m \to A_Q(\mathbb{R}^n)
\]

2. If the current \(T \) is area-minimizing, \(f \) is close to be a minimizer of the Dirichlet energy \(\text{Dir}(f, \mathbb{D}) := \int_{\mathbb{D}} |Df|^2 \).

3. Construct the central manifold, to make sure singularity does not disappear after the blow-up.

4. Prove analogous regularity result for multi-valued functions which minimize the Dirichlet energy.
On the boundary, a regular point can be either *one-sided* or *two-sided*.

Example. Let π be a two-dimensional plane and $\Gamma = \Gamma_1 \cup \Gamma_2$. The area-minimizing current T which bounds Γ is the sum of the two disks bounded by Γ_1 and Γ_2, counting multiplicity.
The first boundary regularity result is by Allard (for varifolds):

Theorem (Allard 1969)

1. If \(p \in \Gamma \) is a point where the density \(\Theta(T, p) \) equals \(\frac{1}{2} \), i.e. \(p \) is one-sided, then \(p \in \text{Reg}_b(T) \).

2. If there is some wedge \(W \) of opening angle smaller than \(\pi \) whose tip contains \(p \) and such that \(\text{spt}(T) \subset W \), then \(\Theta(T, p) = \frac{1}{2} \) and thus \(p \in \text{Reg}_b(T) \).
The first boundary regularity result is by Allard (for varifolds):

Theorem (Allard 1969)

1. If \(p \in \Gamma \) is a point where the density \(\Theta(T, p) \) equals \(\frac{1}{2} \), i.e. \(p \) is one-sided, then \(p \in \text{Reg}_{b}(T) \).

2. If there is some wedge \(W \) of opening angle smaller than \(\pi \) whose tip contains \(p \) and such that \(\text{spt}(T) \subset W \), then \(\Theta(T, p) = \frac{1}{2} \) and thus \(p \in \text{Reg}_{b}(T) \).

Remark

DeLellis-Nardulli-Steinbrüchel: When \(\partial T = Q[\Gamma] \), any boundary point \(p \in \Gamma \) with density \(< \frac{Q+1}{2} \) is regular.
Boundary regularity in codimension one

Theorem (Hardt-Simon 1979)

Let $\Gamma \subset \mathbb{R}^{m+1}$ be a $C^{1,\alpha}$ closed oriented embedded submanifold of dimension $m - 1$. Suppose T is an area-minimizing current with boundary Γ, then $\text{Sing}_b(T) = \emptyset$.

Remark

In particular when $m = 2$, $\text{spt}(T)$ is an embedded surface (with boundary) of finite genus.
Again, the case of higher codimensions is different.

- **Genuine branch singularity.** For example, cut the minimizing current \(\{(z, w) \in \mathbb{C}^2 : z^3 = w^{3k+1}\} \) where \(k \in \mathbb{N} \).
Again, the case of higher codimensions is different.

- **Genuine branch singularity.** For example, cut the minimizing current \(\{(z, w) \in \mathbb{C}^2 : z^3 = w^{3k+1}\} \) where \(k \in \mathbb{N} \).

- **Self-intersection, or singular point of **crossing** type.**
 - For example, let \(\pi_1, \pi_2 \subset \mathbb{R}^4 \) be two-dimensional planes such that \(\pi_1 \cap \pi_2 = \{0\} \). Then \(T = [\pi_1^+] + [\pi_2] \) is an area-minimizing current with boundary \(\mathbb{R} \), and \(0 \in \text{Sing}_b(T) \).
Again, the case of higher codimensions is different.

- **Genuine branch singularity.** For example, cut the minimizing current \(\{(z, w) \in \mathbb{C}^2 : z^3 = w^{3k+1}\} \) where \(k \in \mathbb{N} \).

- **Self-intersection, or singular point of *crossing* type.**
 - For example, let \(\pi_1, \pi_2 \subset \mathbb{R}^4 \) be two-dimensional planes such that \(\pi_1 \cap \pi_2 = \{0\} \). Then \(T = [\pi_1^+] + [\pi_2] \) is an area-minimizing current with boundary \(\mathbb{R} \), and \(0 \in \text{Sing}_b(T) \).
 - Alternatively, add to \(\{(z, w) \in \mathbb{C}^2 : z^2 = w^3\} \) a half plane \([\pi^+] \), where \(\pi \cap \mathbb{C}^2 = \{0\} \).
Until recently it is not even known if $\text{Reg}_b(\Gamma) \neq \emptyset$ for general, non-convex boundary Γ.

Theorem (DeLellis-DePhilippis-Hirsch-Massaccesi)

Let $\Gamma \subset \mathbb{R}^m + n$ be a C^3, α closed oriented submanifold of dimension $m - 1$. Suppose T is an area-minimizing current with boundary Γ, then $\text{Reg}_b(T)$ is open and dense in Γ.

Remark

The proof is reduced to the case when T is collapsed at the boundary Γ.

Zihui Zhao
Until recently it is not even known if $\text{Reg}_b(\Gamma) \neq \emptyset$ for general, non-convex boundary Γ.

Theorem (DeLellis-DePhilippis-Hirsch-Massaccesi)

Let $\Gamma \subset \mathbb{R}^{m+n}$ be a $C^{3,\alpha}$ closed oriented submanifold of dimension $m - 1$. Suppose T is an area-minimizing current with boundary Γ, then $\text{Reg}_b(T)$ is open and dense in Γ.
Boundary regularity in higher codimensions (cont.)

Until recently it is not even known if \(\text{Reg}_b(\Gamma) \neq \emptyset \) for general, non-convex boundary \(\Gamma \).

Theorem (DeLellis-DePhilippis-Hirsch-Massaccesi)

Let \(\Gamma \subset \mathbb{R}^{m+n} \) be a \(C^{3,\alpha} \) closed oriented submanifold of dimension \(m - 1 \). Suppose \(T \) is an area-minimizing current with boundary \(\Gamma \), then \(\text{Reg}_b(T) \) is open and dense in \(\Gamma \).

Remark

The proof is reduced to the case when \(T \) is collapsed at the boundary \(\Gamma \).
Boundary singularity (when $m = 2, \ n \geq 2$)

Question: Can we analyze the size of the boundary singular set, in the particular case of two-dimensional area-minimizing currents?
Boundary singularity (when $m = 2, \ n \geq 2$)

Question: Can we analyze the size of the boundary singular set, in the particular case of two-dimensional area-minimizing currents?

Recall that $\text{Sing}_i(T)$ consists of isolated points. What about $\text{Sing}_b(T)$?
Question: Can we analyze the size of the boundary singular set, in the particular case of two-dimensional area-minimizing currents? Recall that $\text{Sing}_i(T)$ consists of isolated points. What about $\text{Sing}_b(T)$?

Conjecture

When Γ is a closed analytic curve, and T is an area-minimizing current with $\partial T = [\Gamma]$, then $\text{Sing}_b(T)$ is discrete.
Analytic boundary: motivations

Theorem (Gulliver-Lesley 1973, Gulliver 1977, White 1997)

Let Γ be a closed analytic curve, and let T be a classical area-minimizing surface spanning Γ. Then T has no boundary branch point.
Analytic boundary: motivations

Theorem (Gulliver-Lesley 1973, Gulliver 1977, White 1997)

Let Γ be a closed analytic curve, and let T be a classical area-minimizing surface spanning Γ. Then T has no boundary branch point.

Theorem (DeLellis-DePhilippis-Hirsch-Massaccesi)

There are a C^∞ simple closed curve $\Gamma \subset \mathbb{R}^4$ and an area-minimizing current T spanning Γ, such that $\text{Sing}_b(T)$ has an accumulation point.
Analytic boundary: motivations

Theorem (Gulliver-Lesley 1973, Gulliver 1977, White 1997)

Let Γ be a closed analytic curve, and let T be a classical area-minimizing surface spanning Γ. Then T has no boundary branch point.

Theorem (DeLellis-DePhilippis-Hirsch-Massaccesi)

There are a C^∞ simple closed curve $\Gamma \subset \mathbb{R}^4$ and an area-minimizing current T spanning Γ, such that $\text{Sing}_b(T)$ has an accumulation point.

Remark

This is due to the failure of unique continuation at the boundary.
Inspired by Almgren’s approach, we need to understand the analogous problem for Dirichlet energy-minimizers.
Inspired by Almgren’s approach, we need to understand the analogous problem for Dirichlet energy-minimizers.

Assume \(\Gamma \) is an analytic curve in \(\mathbb{R}^{2+n} \). We write \(\Gamma = (\gamma, \varphi) \), where \(\gamma \) is the projection of \(\Gamma \) onto a two-dimensional plane \(\pi \) and \(\varphi \in \pi^\perp \).
Analytic boundary: setup of the linearized model

- Inspired by Almgren’s approach, we need to understand the analogous problem for Dirichlet energy-minimizers.

- Assume Γ is an analytic curve in \mathbb{R}^{2+n}. We write $\Gamma = (\gamma, \varphi)$, where γ is the projection of Γ onto a two-dimensional plane π and $\varphi \in \pi^\perp$.

Definition

We say that a pair $f = (f^+, f^-)$ is in the space $W^{1,2}(\mathcal{D}, \mathcal{A}^\pm_Q)$ with interface (γ, φ), if

$$f^+ \in W^{1,2}(\mathcal{D}^+, \mathcal{A}_{Q+1}) \text{ and } f^- \in W^{1,2}(\mathcal{D}^-, \mathcal{A}_Q);$$
Inspired by Almgren’s approach, we need to understand the analogous problem for Dirichlet energy-minimizers.

Assume Γ is an analytic curve in \mathbb{R}^{2+n}. We write $\Gamma = (\gamma, \varphi)$, where γ is the projection of Γ onto a two-dimensional plane π and $\varphi \in \pi^\perp$.

Definition

We say that a pair $f = (f^+, f^-)$ is in the space $W^{1,2}(\mathbb{D}, \mathcal{A}_Q^\pm)$ with interface (γ, φ), if

1. $f^+ \in W^{1,2}(\mathbb{D}^+, \mathcal{A}_{Q+1})$ and $f^- \in W^{1,2}(\mathbb{D}^-, \mathcal{A}_Q)$;
2. $f^+|_\gamma = f^-|_\gamma + [\varphi]$.

Dirichlet energy-minimizers with analytic interface

Theorem (DeLellis-Z.)

Given an analytic interface (γ, φ), suppose $f \in W^{1,2}(\mathbb{D}, A_{Q}^\pm)$ minimizes the Dirichlet energy among all competitors with the prescribed interface. Then the singular set of f is discrete.
Dirichlet energy-minimizers with analytic interface

Theorem (DeLellis-Z.)

Given an analytic interface \((\gamma, \phi)\), suppose \(f \in W^{1,2}(D, A^\pm_Q)\) minimizes the Dirichlet energy among all competitors with the prescribed interface. Then the singular set of \(f\) is discrete.

Remark

Exceptional case: non-homogeneous blow-down of half of the Enneper surface.
Thank you!