
Workshop Modern Math Workshop 2019
Organizers: Sudipta Dasmohapatra (SAMSI  Statistical and Applied Mathematical Sciences Institute), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Michael Singer (MSRI  Mathematical Sciences Research Institute), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))As part of the Mathematical Sciences Collaborative Diversity Initiatives, six mathematics institutes are pleased to host their annual SACNAS preconference event, the 2019 Modern Math Workshop (MMW). The Modern Math Workshop is intended to encourage minority undergraduates to pursue careers in the mathematical sciences and to assist undergraduates, graduate students and recent PhDs in building their research networks.
Updated on May 16, 2019 05:33 PM PDT 
Workshop Symposium in Honor of Julia Robinson’s 100th Birthday
Organizers: Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), Thomas Scanlon (University of California, Berkeley), Carol Wood (Wesleyan University)A Symposium on the occasion of Julia Robinson’s 100th birthday will be held on Monday December 9, 2019 at MSRI. Julia Robinson (19191985) was a leading mathematical logician of the twentieth century, and notably a first in many ways, including the first woman president of the American Mathematical Society and the first woman mathematician elected to membership in the National Academy of Sciences. Her most famous work, together with Martin Davis and Hilary Putnam, led to Yuri Matiyasevich's solution in the negative of Hilbert’s Tenth Problem, showing that there is no general algorithmic solution for Diophantine equations. She contributed in other topics as well. Her 1948 thesis linked the undecidability of the field of rational numbers to Godel’s proof of undecidability of the ring of integers. Confirmed participants in this daylong celebration of her work and of current mathematics insprired by her research include: Lenore Blum, who will give a public lecture, Lou van den Dries, Martin Davis, Kirsten Eisentrager, and Yuri Matiyasevich.
Updated on Aug 14, 2019 12:48 PM PDT 
Workshop Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Michael Driskill (Math for America ), Moon Duchin (Tufts University), Jordan Ellenberg (University of WisconsinMadison), Cliff Freeman (The Young People's Project), Nicole Joseph (Vanderbilt University), Luis Leyva (Vanderbilt University), Yeshi Milner (Data for Black Lives), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington State University in St. Louis)Sophisticated computational and quantitative techniques drive important decisionmaking in modern society. Such methods and algorithms are meant to improve the efficiency with which we work and the ways in which we live. An understanding the mathematical underpinnings of these techniques can be used either to disrupt or to purpetuate inequities, and thus such knowledge constitutes power in the modern world. How does this powerful knowledge get used for the common good and get passed on to our children equitably? What does it imply about the kinds of mathematical skills, practices, and dispositions students should learn in schools, colleges, and universities?
Updated on Aug 14, 2019 12:29 PM PDT 
Summer Graduate School Combinatorial and DGAlgebra Techniques for Free Resolutions (Tianjin, China)
Organizers: Chengming Bai (Chern Institute of Mathematics), LEAD Dave Bayer (Barnard College), Claudia Miller (Syracuse University)The two topics, combinatorial theory of free resolutions and differential graded algebra techniques in homological algebra, each have a long and rich history in commutative algebra and its applications to algebraic geometry. Free resolutions are at the center of much of the study in the field and these two approaches give powerful tools for their study and their application to other problems. Neither of these topics is generally covered in graduate courses. Furthermore, recent developments have exhibited exciting interplay between the two subjects. The purpose of the school is to introduce the graduate students to these subjects and these new developments. The school will consist of two lectures each day and carefully planned problem sessions designed to reinforce the foundational material and to give them a chance to experiment with problems involving the interplay between the two subjects.
Updated on Jul 26, 2019 03:43 PM PDT 
Summer Graduate School Algebraic Theory of Differential and Difference Equations, Model Theory and their Applications
Organizers: LEAD Alexey Ovchinnikov (City University of New York (CUNY)), Anand Pillay (University of Notre Dame), Gleb Pogudin (New York University, Courant Institute), Thomas Scanlon (University of California, Berkeley), Michael Wibmer (University of Notre Dame)The purpose of the summer school will be to introduce graduate students to effective methods in algebraic theories of differential and difference equations with emphasis on their modeltheoretic foundations and to demonstrate recent applications of these techniques to studying dynamic models arising in sciences. While these topics comprise a coherent and rich subject, they appear in graduate coursework in at best a piecemeal way, and then only as components of classes for other aims. With this Summer Graduate School, students will learn both the theoretical basis of differential and difference algebra and how to use these methods to solve practical problems. Beyond the lectures, the graduate students will meet daily in problem sessions and will participate in oneonone mentoring sessions with the lecturers and organizers.
Updated on Jul 26, 2019 03:42 PM PDT 
Summer Graduate School Geometric Flows (Athens, Greece)
Organizers: Nicholas Alikakos (National and Kapodistrian University of Athens (University of Athens)), Panagiota Daskalopoulos (Columbia University)[The image on this vase from Minoan Crete, dated on 15002000 BC, resembles an ancient solution to the Curve shortening flow  one of the most basic geometric flows. The vase is at Heraklion Archaeological Museum]
The purpose of the workshop is to introduce graduate students to some of the most important geometric evolution equations.
This is an area of geometric analysis that lies at the interface of differential geometry and partial differential equations. The lectures will begin with an introduction to nonlinear diffusion equations and continue with classical results on the Ricci Flow, the Mean curvature flow and other fully nonlinear extrinsic flows such as the Gauss curvature flow. The lectures will also include geometric applications such as isoperimetric inequalities, topological applications such as the Poincaré onjecture, as well as recent important developments related to the study of singularities and ancient solutions.
Updated on Aug 02, 2019 12:19 PM PDT 
Summer Graduate School Séminaire de Mathématiques Supérieures 2020: Discrete Probability, Physics and Algorithms (Montréal, Canada)
Organizers: Gerard Ben Arous (New York University, Courant Institute), LEAD Alexander Fribergh (University of Montreal), Lea Popovic (Concordia University)Proofs are at the foundations of mathematics. Viewed through the lens of theoretical computer science, verifying the correctness of a mathematical proof is a fundamentalÂ computational task. Indeed, the P versus NP problem, which deals precisely with the complexity of proof verification, is one of the most important open problems in all of mathematics.
Updated on Aug 14, 2019 02:24 PM PDT 
Summer Graduate School Random Graphs
Organizers: Louigi AddarioBerry (McGill University), Remco van der Hofstad (Technische Universiteit Eindhoven)The topic of random graphs is at the forefront of applied probability, and it is one of the central topics in multidisciplinary science where mathematical ideas are used to model and understand the real world. At the same time, random graphs pose challenging mathematical problems that have attracted the attention from probabilists and combinatorialists since the 1960, with the pioneering work of Erdös and Rényi. Around the turn of the millennium, very large data sets started to become available, and several applied disciplines started to realize that many realworld networks, even though they are from various different origins, share many fascinating features. In particular, many of such networks are small worlds, meaning that graph distances in them are typically quite small, and they are scalefree, in the sense that there are enormous differences in the number of connections that their elements make. In particular, such networks are quite different from the classical random graph models, such as proposed by Erdös and Rényi.
Updated on Jul 26, 2019 03:40 PM PDT 
Summer Graduate School Algebraic Curves (Hainan, China)
Organizers: David Eisenbud (MSRI  Mathematical Sciences Research Institute), Joseph Harris (Harvard University)[Image: The simplest interesting case of linkage (liaison) of curves in projective 3space. We see two quadric surfaces, one of which is a cone, meeting in the union of a line (vertical in the illustration) and a twisted cubic (snaking up from the bottom left to the upper right, tangent to the line at the origin.]
The theory of algebraic curves, arguably the oldest branch of algebraic geometry, has seen major developments in recent years, for example in the study of syzygies, and around questions about moduli spaces and Hilbert schemes of curves. The theory is rich in research activity and unsolved problems. There is an encyclopedic work by Arbarello, Cornalba, Griffiths and Harris, but there is no modern text that could be used as a textbook and that goes beyond the basics of the theory. We have embarked on a project to write a book at roughly the level of the wonderful book on complex algebraic surfaces by Arnaud Beauville. The intent can be seen from a list of some major topics it will treat:
 Linear series and BrillNoether theory
 Personalities: curves in projective space with low genus and degree
 Overview of moduli and Jacobians
 Hilbert schemes
 Syzygies and linkage
The school will have two series of lectures, one by Harris and one by Eisenbud. Harris’ lectures will focus on the more geometric side of the theory, including BrillNoether theory, families of curves and Jacobians; while Eisenbud’s lectures will focus on the more algebraic side of the theory, including properties of the homogeneous coordinate rings of curves (CohenMacaulay, Gorenstein, free resolutions, scrolls, ...) Both lecturers will rely on chapters from the forthcoming book, which should be finished in large part by the time of the school. In addition, some of Eisenbud’s lectures will treat the use of Macaulay2 to investigate the projective embeddings of curves.
Updated on Aug 14, 2019 03:45 PM PDT 
Summer Graduate School Foundations and Frontiers of Probabilistic Proofs (Zurich, Switzerland)
Organizers: Alessandro Chiesa (University of California, Berkeley), Tom Gur (University of Warwick)Proofs are at the foundations of mathematics. Viewed through the lens of theoretical computer science, verifying the correctness of a mathematical proof is a fundamental computational task. Indeed, the P versus NP problem, which deals precisely with the complexity of proof verification, is one of the most important open problems in all of mathematics.
The complexitytheoretic study of proof verification has led to exciting reenvisionings of mathematical proofs. For example, probabilistically checkable proofs (PCPs) admit localtoglobal structure that allows verifying a proof by reading only a minuscule portion of it. As another example, interactive proofs allow for verification via a conversation between a prover and a verifier, instead of the traditional static sequence of logical statements. The study of such proof systems has drawn upon deep mathematical tools to derive numerous applications to the theory of computation and beyond.
In recent years, such probabilistic proofs received much attention due to a new motivation, delegation of computation, which is the emphasis of this summer school. This paradigm admits ultrafast protocols that allow one party to check the correctness of the computation performed by another, untrusted, party. These protocols have even been realized within recentlydeployed technology, for example, as part of cryptographic constructions known as succinct noninteractive arguments of knowledge (SNARKs).
This summer school will provide an introduction to the field of probabilistic proofs and the beautiful mathematics behind it, as well as prepare students for conducting cuttingedge research in this area.
Updated on Sep 12, 2019 01:58 PM PDT 
Summer Graduate School New Directions in Representation Theory (AMSI, Brisbane, Australia)
Organizers: Tim Brown (Australian Mathematical Sciences Institute), Joseph Grotowski (University of Queensland), Chloe Pearse (Australian Mathematical Sciences Institute), Jacqui Ramagge (University of Sydney), Ole Warnaar (University of Queensland), Geordie Williamson (University of Sydney)Representation Theory has undergone a revolution in recent years, with the development of what is now known as higher representation theory. In particular, the notion of categorification has led to the resolution of many problems previously considered to be intractable.
The school will begin by providing students with a brief but thorough introduction to what could be termed the “bread and butter of modern representation theory”, i.e., compact Lie groups and their representation theory; character theory; structure theory of algebraic groups.
We will then continue on to a number of more specialized topics. The final mix will depend on discussions with the prospective lecturers, but we envisage such topics as:
• modular representation theory of finite groups (blocks, defect groups, Broué’s conjecture);
• perverse sheaves and the geometric Satake correspondence;
• the representation theory of real Lie groups.
Updated on Aug 08, 2019 09:36 AM PDT 
Summer Graduate School Metric Geometry and Geometric Analysis (Oxford, United Kingdom)
Organizers: LEAD Cornelia Drutu (University of Oxford), Panos Papazoglou (University of Oxford)The purpose of the summer school is to introduce graduate students to key mainstream directions in the recent development of geometry, which sprang from Riemannian Geometry in an attempt to use its methods in various contexts of nonsmooth geometry. This concerns recent developments in metric generalizations of the theory of nonpositively curved spaces and discretizations of methods in geometry, geometric measure theory and global analysis. The metric geometry perspective gave rise to new results and problems in Riemannian Geometry as well.
All these themes are intertwined and have developed either together or greatly influencing one another. The summer school will introduce some of the latest developments and the remaining open problems in these very modern areas, and will emphasize their synergy.
Updated on Jul 31, 2019 11:07 AM PDT 
Summer Graduate School Sums of Squares Method in Geometry, Combinatorics and Optimization
Organizers: LEAD Grigoriy Blekherman (Georgia Institute of Technology), Annie Raymond (University of Massachusetts Amherst), Rekha Thomas (University of Washington)The study of nonnegative polynomials and sums of squares is a classical area of real algebraic geometry dating back to Hilbert’s 17th problem. It also has rich connections to real analysis via duality and moment problems. In the last 15 years, sums of squares relaxations have found a wide array of applications from very applied areas (e.g., robotics, computer vision, and machine learning) to theoretical applications (e.g., extremal combinatorics, theoretical computer science). Also, an intimate connection between sums of squares and classical algebraic geometry has been found. Work in this area requires a blend of ideas and techniques from algebraic geometry, convex geometry and representation theory. After an introduction to nonnegative polynomials, sums of squares and semidefinite optimization, we will focus on the following three topics:
 Sums of squares on real varieties (sets defined by real polynomial equations) and connections with classical algebraic geometry.
 Sums of squares method for proving graph density inequalities in extremal combinatorics. Here addition and multiplication take place in the gluing algebra of partially labelled graphs.
 Sums of squares relaxations for convex hulls of real varieties and thetabodies with applications in optimization.
The summer school will give a selfcontained introduction aimed at beginning graduate students, and introduce participants to the latest developments. In addition to attending the lectures, students will meet in intensive problem and discussion sessions that will explore and extend the topics developed in the lectures.
Updated on Jul 26, 2019 03:40 PM PDT 
Summer Graduate School Introduction to water waves
Organizers: Mihaela Ifrim (University of WisconsinMadison), Daniel Tataru (University of California, Berkeley)The purpose of this two weeks school is to introduce graduate students to the state of the art methods and results in the study of incompressible Euler’s equations in general, and water waves in particular. This is a research area which is highly relevant to many real life problems, and in which substantial progress has been made in the last decade.
The goal is to present the main current research directions in water waves. We will begin with the physical derivation of the equations, and present some of the analytic tools needed in study. The final goal will be twofold, namely (i) to understand the local solvability of the Cauchy problem for water waves, as well as (ii) to describe the long time behavior of solutions.
Through the lectures and associated problem sessions, students will learn about a number of new analysis tools which are not routinely taught in a graduate school curriculum. The goal is to help students acquire the knowledge needed in order to start research in water waves and Euler equations.
Updated on Jul 26, 2019 03:40 PM PDT

Upcoming Educational Events 