
Workshop Critical Issues in Mathematics Education 2018: Access to mathematics by opening doors for students currently excluded from mathematics
Organizers: Aditya Adiredja (University of Arizona), LEAD Julia Aguirre (University of Washington  Tacoma), Kate Belin (Fannie Lou Hamer Freedom High School), LEAD Ricardo Cortez (Tulane University), Michael Driskill (Math for America ), Nicole Joseph (Vanderbilt University), Katherine Stevenson (California State University, Northridge), Francis Su (Harvey Mudd College), Maria del Rosario Zavala (San Francisco State University)Our mathematics education system is inequitable. It operates in ways that leave a significant proportion of students with negative mathematics experiences and inadequate mathematical preparation. The problem is historical and systemic, and the students most disaffected by the current system are overwhelmingly Black and Latino, Indigenous, poor, women, immigrant or first generation college students. If our mathematics community is to sustainably grow and thrive, mathematics education at all levels must be transformed.
This workshop focuses on students for whom we do not yet successfully ensure access to and advancement in mathematics. Sessions will share relevant programmatic efforts and innovative research that have been shown to maintain or increase students’ engagement and interests in mathematics across k12, undergraduate and graduate education. The sessions will focus particularly on reproducible efforts that affirm those students’ identities and their diverse intellectual resources and lived experiences. These efforts at various levels of mathematics education will highlight ways in which meaningful experiences in mathematics can disrupt ongoing systemic oppression. Participants will leave with conceptual and practical ways to open up and elevate mathematics education where all students thrive.
Updated on Sep 29, 2017 09:35 AM PDT 
Workshop Latinx in the Mathematical Sciences Conference 2018
Organizers: Federico Ardila (San Francisco State University), Ricardo Cortez (Tulane University), Tatiana Toro (University of Washington), Mariel Vazquez (University of California, Davis)On March 810, 2018, IPAM will host a conference showcasing the achievements of Latinx in the mathematical sciences. The goal of the conference is to encourage Latinx to pursue careers in the mathematical sciences, to promote the advancement of Latinx currently in the discipline, to showcase research being conducted by Latinx at the forefront of their fields, and, finally, to build a community around shared academic interests. The conference will be held on the UCLA campus in Los Angeles, CA. It will begin at noon on Thursday, March 8.
This conference is sponsored by the Mathematical Sciences Institutes Diversity Initiative, with funding from the National Science Foundation Division of Mathematical Sciences.
Updated on Oct 23, 2017 04:53 PM PDT 
Summer Graduate School Séminaire de Mathématiques Supérieures 2018: Derived Geometry and Higher Categorical Structures in Geometry and Physics
Organizers: Anton Alekseev (Université de Genève), Ruxandra Moraru (University of Waterloo), Chenchang Zhu (Universität Göttingen)Higher categorical structures and homotopy methods have made significant influence on geometry in recent years. This summer school is aimed at transferring these ideas and fundamental technical tools to the next generation of mathematicians.
The summer school will focus on the following four topics: higher categorical structures in geometry, derived geometry, factorization algebras, and their application in physics. There will be eight to ten mini courses on these topics, including mini courses led by Chirs Brav, Kevin Costello, Jacob Lurie, and Ezra Getzler. The prerequisites will be kept at a minimum, however, a introductory courses in differential geometry, algebraic topology and abstract algebra are recommended.Updated on Oct 11, 2017 10:49 AM PDT 
Summer Graduate School The ∂Problem in the TwentyFirst Century
Organizers: Debraj Chakrabarti (Central Michigan University), Jeffery McNeal (Ohio State University)This Summer Graduate School will introduce students to the modern theory of the inhomogeneous CauchyRiemann equation, the fundamental partial differential equation of Complex Analysis. This theory uses powerful tools of partial differential equations, differential geometry and functional analysis to obtain a refined understanding of holomorphic functions on complex manifolds. Besides students planning to work in complex analysis, this course will be valuable to those planning to study partial differential equations, complex differential and algebraic geometry, and operator theory. The exposition will be selfcontained and the prerequisites will be kept at a minimum
Updated on Jul 20, 2017 11:48 AM PDT 
MSRIUP MSRIUP 2018: The Mathematics of Data Science
Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), LEAD Maria Mercedes Franco (Queensborough Community College (CUNY)), Rebecca Garcia (Sam Houston State University), David Uminsky (University of San Francisco), Suzanne Weekes (Worcester Polytechnic Institute)The MSRIUP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.
In 2018, MSRIUP will focus on the core role of (linear) algebra in current research and application areas of Data Science ranging from unsupervised learning, clustering and networks, to algebraic signal processing and feature extraction, to the central role linear algebra plays in deep machine learning. The research program will be led by Dr. David Uminsky, Associate Professor of Mathematics and Statistics at the University of San Francisco.
Updated on Oct 11, 2017 10:55 AM PDT 
Summer Graduate School Mathematical Analysis of Behavior
Organizers: Ann Hermundstad (Janelia Research Campus, HHMI), Vivek Jayaraman (Janelia Research Campus, HHMI), Eva Kanso (University of Southern California), L. Mahadevan (Harvard University)Explore Outstanding Phenomena in Animal Behavior
Jointly hosted by Janelia and the Mathematical Sciences Research Institute (MSRI), this program will bring together 1520 advanced PhD students with complementary expertise who are interested in working at the interface of mathematics and biology. Emphasis will be placed on linking behavior to neural dynamics and exploring the coupling between these processes and the natural sensory environment of the organism. The aim is to educate a new type of global scientist that will work collaboratively in tackling complex problems in cellular, circuit and behavioral biology by combining experimental and computational techniques with rigorous mathematics and physics.
Updated on Sep 29, 2017 09:49 AM PDT 
Summer Graduate School Derived Categories
Organizers: Nicolas Addington (University of Oregon), LEAD Alexander Polishchuk (University of Oregon)The goal of the school is to give an introduction to basic techniques for working with derived categories, with an emphasis on the derived categories of coherent sheaves on algebraic varieties. A particular goal will be to understand Orlov’s equivalence relating the derived category of a projective hypersurface with matrix factorizations of the corresponding polynomial.Updated on Jul 20, 2017 12:29 PM PDT 
Summer Graduate School Hprinciple
Organizers: Emmy Murphy (Northwestern University), Takashi Tsuboi (University of Tokyo)This two week summer school will introduce graduate students to the theory of hprinciples. After building up the theory from basic smooth topology, we will focus on more recent developments of the theory, particularly applications to symplectic and contact geometry, and foliation theory.
Updated on Sep 28, 2017 03:55 PM PDT 
Summer Graduate School IAS/PCMI 2018: Harmonic Analysis
Organizers: Carlos Kenig (University of Chicago), Fanghua Lin (New York University, Courant Institute), Svitlana Mayboroda (University of Minnesota, Twin Cities), Tatiana Toro (University of Washington)Created on Oct 09, 2017 01:36 PM PDT 
Summer Graduate School Representations of High Dimensional Data
Organizers: Blake Hunter (Claremont McKenna College), Deanna Needell (University of California, Los Angeles)In today's world, data is exploding at a faster rate than computer architectures can handle. This summer school will introduce students to modern and innovative mathematical techniques that address this phenomenon. Handson topics will include data mining, compression, classification, topic modeling, largescale stochastic optimization, and more.Updated on Jul 20, 2017 01:46 PM PDT
Past Educational Events

Workshop Modern Math Workshop 2017
Organizers: Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), Leslie McClure (SAMSI  Statistical and Applied Mathematical Sciences Institute), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))As part of the Mathematical Sciences Collaborative Diversity Initiatives, nine mathematics institutes are pleased to offer their annual SACNAS preconference event, the 2017 Modern Math Workshop (MMW). The Modern Math Workshop is intended to encourage minority undergraduates to pursue careers in the mathematical sciences and to assist undergraduates, graduate students and recent PhDs in building their research networks. The Modern Math Workshop is part of the SACNAS National Conference; the workshop and the conference take place in the Salt Palace Convention Center in Salt Lake City, Utah. The MMW starts at 1:00 pm on Wednesday, October 18 with registration beginning at noon.
Updated on Oct 12, 2017 02:36 PM PDT 
Summer Graduate School Automorphic Forms and the Langlands Program
Organizers: LEAD Kevin Buzzard (Imperial College, London)The summer school will be an introduction to the more algebraic aspects of the theory of automorphic forms and representations. One of the goals will be to understand the statements of the main conjectures in the Langlands programme. Another will be to gain a good working understanding of the fundamental definitions in the theory, such as principal series representations, the Satake isomorphism, and of course automorphic forms and representations for groups such as GL_n and its inner forms.
Updated on Aug 04, 2017 11:02 AM PDT 
Summer Graduate School Nonlinear dispersive PDE, quantum many particle systems and the world between
Organizers: Natasa Pavlovic (University of Texas), Gigliola Staffilani (Massachusetts Institute of Technology), Nikolaos Tzirakis (University of Illinois at UrbanaChampaign)The purpose of the summer school is to introduce graduate students to the recent developments in the area of dispersive partial differential equations (PDE), which have received a great deal of attention from mathematicians, in part due to ubiquitous applications to nonlinear optics, water wave theory and plasma physics.
Recently remarkable progress has been made in understanding existence and uniqueness of solutions to nonlinear Schrodinger (NLS) and KdV equations, and properties of those solutions. We will outline the basic tools that were developed to address these questions. Also we will present some of recent results on derivation of NLS equations from quantum many particle systems and will discuss how methods developed to study the NLS can be relevant in the context of the derivation of this nonlinear equation.
Updated on Sep 12, 2017 02:02 PM PDT 
Summer Graduate School Séminaire de Mathématiques Supérieures 2017: Contemporary Dynamical Systems
Organizers: Sylvain Crovisier (Université de Paris VI (Pierre et Marie Curie)Université de Paris XI (ParisSud)), LEAD Konstantin Khanin (University of Toronto), Andrés Navas Flores (University of Santiago de Chile), Christiane Rousseau (Université de Montréal), Marcelo Viana (Institute of Pure and Applied Mathematics (IMPA)), Amie Wilkinson (University of Chicago)The theory of dynamical systems has witnessed very significant developments in the last decades, including the work of two 2014 Fields medalists, Artur Avila and Maryam Mirzakhani. The school will concentrate on the recent significant developments in the field of dynamical systems and present some of the present main streams of research. Two central themes will be those of partial hyperbolicity on one side, and rigidity, group actions and renormalization on the other side. Other themes will include homogeneous dynamics and geometry and dynamics on infinitely flat surfaces (both providing connections to the work of Maryam Mirzakhani), topological dynamics, thermodynamical formalism, singularities and bifurcations in analytic dynamical systems.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Positivity Questions in Geometric Combinatorics
Organizers: Eran Nevo (The Hebrew University of Jerusalem), Raman Sanyal (Johann Wolfgang GoetheUniversität Frankfurt)McMullen’s gConjecture from 1970 is a shining example of mathematical foresight that combined all results available at that time to conjure a complete characterization of face numbers of convex simple/simplicial polytopes. The key statement in its verification is that certain combinatorial numbers associated to geometric (or topological) objects are nonnegative. The aim of this workshop is to introduce graduate students to selected contemporary topics in geometric combinatorics with an emphasis on positivity questions. It is fascinating that the dual notions of simple and simplicial polytopes lead to different but equally powerful algebraic frameworks to treat such questions. A key feature of the lectures will be the simultaneous development of these algebraic frameworks from complementary perspectives: combinatorialtopological and convexgeometric. General concepts (such as Lefschetz elements, Hodge–Riemann–Minkowski inequalities) will be developed sidebyside, and analogies will be drawn to concepts in algebraic geometry, Fourier analysis, rigidity theory and measure theory. This allows for entry points for students with varying backgrounds. The courses will be supplemented with guest lectures highlighting further connections to other fields.
Updated on Jul 21, 2017 10:13 AM PDT 
Summer Graduate School Soergel Bimodules
Organizers: LEAD Ben Elias (University of Oregon), Geordie Williamson (University of Sydney)We will give an introduction to categorical representation theory, focusing on the example of Soergel bimodules, which is a categorification of the IwahoriHecke algebra. We will give a comprehensive introduction to the "tool box" of modern (higher) representation theory: diagrammatics, homotopy categories, categorical diagonalization, module categories, Drinfeld center, algebraic Hodge theory.
Updated on Jul 10, 2017 01:18 PM PDT 
MSRIUP MSRIUP 2017: Solving Systems of Polynomial Equations
Organizers: LEAD Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Mercedes Franco (Queensborough Community College (CUNY)), Herbert Medina (Loyola Marymount University), J. Maurice Rojas (Texas A & M University), Suzanne Weekes (Worcester Polytechnic Institute)The MSRIUP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.In 2017, MSRIUP will focus on Solving Systems of Polynomial Equations, a topic at the heart of almost every computational problem in the physical and life sciences. We will pay special attention to complexity issues, highlighting connections with tropical geometry, number theory, and the P vs. NP problem. The research program will be led by Prof. J. Maurice Rojas of Texas A&M University.Students who have had a linear algebra course and a course in which they have had to write proofs are eligible to apply. Due to funding restrictions, only U.S. citizens and permanent residents may apply regardless of funding. Members of underrepresented groups are especially encouraged to apply.Updated on Aug 17, 2017 11:42 AM PDT 
Summer Graduate School Subfactors: planar algebras, quantum symmetries, and random matrices
Organizers: LEAD Scott Morrison (Australian National University), Emily Peters (Loyola University), Noah Snyder (Indiana University)Subfactor theory is a subject from operator algebras, with many surprising connections to other areas of mathematics. This summer school will be devoted to understanding the representation theory of subfactors, with a particular emphasis on connections to quantum symmetries, fusion categories, planar algebras, and random matrices
Updated on Jun 20, 2017 03:34 PM PDT 
Workshop Career in Academia
Organizers: Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), Estelle Basor (AIM  American Institute of Mathematics), David Farmer (AIM  American Institute of Mathematics), Sally Koutsoliotas (Bucknell University)This workshop will focus on preparing each participant for a successful career as a mathematician at a college or university. Beginning with the hiring process, a thorough discussion of the various elements of the application packet will take place in the context of each participant's materials. Working individually with experienced faculty, participants will review and refine their cover letters, C.V., research, and teaching statements. This will be followed by activities related to the interview. The primary goals of the workshop are to develop an understanding of the hiring process from the institutions' perspective, to refine the application packet, to learn what to expect during the interview process (including the job talk), and to prepare for negotiating salary and startup packages.
Additional time will be spent on aspects of the pretenure years including the development of a research program, writing grant proposals, and mentoring research students. The threeday workshop will consist of oneonone work with experienced mentors, small group discussions, critique of written materials, plenary sessions, and time for individual work and consultation.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Commutative Algebra and Related Topics
Organizers: Shinobu Hikami (Okinawa Institute of Science and Technology), LEAD Shihoko Ishii (Tokyo Woman's Christian University), Kazuhiko Kurano (Meiji University), Kenichi Yoshida (Nihon University)The purpose of the school will be to introduce graduate students to foundational results in commutative algebra, with particular emphasis of the diversity of the related topics with commutative algebra. Some of these topics are developing remarkably in this decade and through learning those subjects the graduate students will be stimulated toward future research.
Updated on Jun 21, 2017 04:53 PM PDT 
Workshop Critical Issues in Mathematics Education 2017: Observing for Access, Power, and Participation in Mathematics Classrooms as a Strategy to Improve Mathematics Teaching and Learning
Organizers: Michael Driskill (Math for America ), Esther Enright (Boise State University), Rochelle Gutierrez (University of Illinois), LEAD Jodie Novak (University of Northern Colorado), LEAD Miriam Sherin (Northwestern University), Joi Spencer (University of San Diego), Elizabeth van Es (University of California, Irvine)Success rates in mathematics as well as recruitment and retention rates in the mathematics pipeline are low at all education levels and are, across predictable demographics, disproportionately low for students who are women, Latin@, Black, American Indian, recent immigrants, emergent bilinguals/multilinguals, and poor. Efforts to address these low rates often focus on programmatic solutions such as creating mentoring or bridge programs to address perceived deficiencies. While these programs achieve some success, evidence suggests that they may not substantially improve students’ subsequent success in mathematics or meaningfully address the ways that students experience mathematics instruction.
The 2017 CIME workshop will focus on observations of mathematics classrooms through the lens of equity. Specifically, we will use observation as a tool for understanding and improving imbalances of access, participation, and power in mathematics teaching and learning. In doing so, we seek to better understand students’ experiences in mathematics classrooms in order to improve academic success, recruitment and retention, and meaningful experiences for historically marginalized populations.
Five questions structure the highly interactive design of the workshop:
 What does it mean to create an equitable classroom environment? How can the structure of classroom interactions lead to imbalances of access, identity, and power in mathematics teaching and learning? How can such structures be rebuilt to better serve all students?
 How might observations of mathematics instruction help us to identify power dynamics in classrooms? What language is helpful to describe interactions in mathematics classrooms? What might we learn from observations about how culture and identity are developed for some students but not others? What do classroom observations reveal about how instruction supports or discourages engagement in mathematics for students of different backgrounds?
 What does it mean to observe interactions in a mathematics classroom with an eye towards equity? What language is helpful to describe interactions in mathematics classrooms? How do we observe and describe interactions among students, between students and mathematics, between students and instructors, and between students and resources (i.e., textbooks, computers, chalkboards, manipulatives)?
 What professional experiences can support mathematics instructors to learn how to observe for, describe, interpret, and productively address interactions in the mathematics classroom from the lens of equity? What professional experiences can support mathematics instructors to increase the number of equitable interactions and decrease the number of inequitable ones in their classrooms?
 What measures might be useful in tracking our progress in learning to see, describe, interpret, and productively address (in)equitable interactions in mathematics classrooms? What measures and tools might be useful in tracking the impacts on instruction and student learning? How might we develop infrastructure to help with this work (video library, faculty resources, etc.)?
Updated on May 06, 2017 01:18 AM PDT 
Workshop Academic Sponsors Day
Updated on May 06, 2017 01:18 AM PDT 
Workshop Circle on the Road
Organizers: Selin Kalayciglu (The Center for Mathematical Talent), Berna Ok (The Center for Mathematical Talent), LEAD Diana White (MSRI  Mathematical Sciences Research Institute), Brandy Wiegers (Central Washington University)Bringing together new and experienced leaders of Math Circles and other similar outreach programs, this year’s Circle on the Road will include discussions, presentations, and opportunities to facilitate different mathematical problems. In addition, some informal STEM education researchers will join us to further our research and evaluation efforts.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Math Circle  Mentorship and Partnership Program
Organizers: Diana White (MSRI  Mathematical Sciences Research Institute), Brandy Wiegers (Central Washington University)Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Chip Firing and Tropical Curves
Organizers: LEAD Matthew Baker (Georgia Institute of Technology), David Jensen (University of Kentucky), Sam Payne (Yale University)Tropical geometry uses a combination of techniques from algebraic geometry, combinatorics, and convex polyhedral geometry to study degenerations of algebraic varieties; the simplest tropical objects are tropical curves, which one can think of as "shadows" of algebraic curves. Linear equivalence of divisors on an abstract tropical curve is determined by a simple but rich combinatorial process called "chip firing", which was discovered independently in the discrete setting by physicists and graph theorists. From a pedagogical point of view, one can view tropical curves as a combinatorial model for the highly analogous but more abstract theory of algebraic curves, but there is in fact much more to the story than this: one can use tropical curves and chip firing to prove theorems in algebraic geometry and number theory. This field is relatively new, so participants will have the opportunity to start from scratch and still get a glimpse of the cutting edge in this active research area.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Electronic Structure Theory
Organizers: LEAD Lin Lin (University of California, Berkeley), Jianfeng Lu (Duke University), James Sethian (University of California, Berkeley)Ab initio or first principle electronic structure theories, particularly represented by KohnSham density functional theory (KSDFT), have been developed into workhorse tools with a wide range of scientific applications in chemistry, physics, materials science, biology etc. What is needed are new techniques that greatly extend the applicability and versatility of these approaches. At the core, many of the challenges that need to be addressed are essentially mathematical. The purpose of the workshop is to provide graduate students a selfcontained introduction to electronic structure theory, with particular emphasis on frontier topics in aspects of applied analysis and numerical methods.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School An Introduction to Character Theory and the McKay Conjecture
Organizers: Robert Guralnick (University of Southern California), Pham Tiep (Rutgers University)Character Theory of Finite Groups provides one of the most powerful tools to study groups. In this course we will give a gentle introduction to basic results in the Character Theory, as well as some of the main conjectures in Group Representation Theory, with particular emphasis on the McKay Conjecture.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Mixed Integer Nonlinear Programming: Theory, algorithms and applications
Organizers: Francisco Castro (University of Sevilla), Elena Fernandez (Universitat Politecnica de Catalunya), Justo Puerto (University of Sevilla)This school is oriented to the presentation of theory, algorithms and applications for the solution of mixed integer nonlinear problems (MINLP). This type of problems appears in numerous application areas where the modelization of nonlinear phenomena with logical constraints is important; we must remember here the memorable phrase “the world is nonlinear”. Nowadays the theoretical aspects of this area are spread in a number of recent papers which makes it difficult, for nonspecialist, to have a solid background of the existing results and new advances in the field. This school aims to organize and present this material in an organized way. Moreover, it also pursues to link theory with actual applications. In particular, remarkable applications can be found in air traffic control agencies, the air companies, the electric power generation companies, the chemical complex units, the analysis of financial products usually associated with risk dealing and in the algorithms in the statistical field and artificial intelligence as for instance artificial neural networks, or supporting vector machines, among many others.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Harmonic Analysis and Elliptic Equations on real Euclidean Spaces and on Rough Sets
Organizers: LEAD Steven Hofmann (University of Missouri), Jose Maria Martell (Instituto de Ciencias Matematicas (ICMAT))The goal of the workshop is to present harmonic analysis techniques in $R^n$ (the ``flat" setting), and then to show how those techniques extend to much rougher settings, with application to the theory of elliptic equations. Thus, the subject matter of the workshop will introduce the students to an active, current research area: the interface between harmonic analysis, elliptic PDE, and geometric measure theory.
Updated on May 06, 2017 01:18 AM PDT 
MSRIUP MSRIUP 2016: Sandpile Groups
Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Mercedes Franco (Queensborough Community College (CUNY)), Luis Garcia Puente (Sam Houston State University), Herbert Medina (Loyola Marymount University), LEAD Suzanne Weekes (Worcester Polytechnic Institute)The MSRIUP summer program is designed for undergraduate students who have completed two years of universitylevel mathematics courses and would like to conduct research in the mathematical sciences. Due to funding restrictions, only U.S. citizens and permanent residents are eligible to apply and the program cannot accept foreign students regardless of funding. The academic portion of the 2016 program will be led by Prof. Luis GarciaPuente of Sam Houston State University.
Updated on Aug 17, 2017 11:42 AM PDT 
Summer Graduate School Seminaire de Mathematiques Superieures 2016: Dynamics of Biological Systems
Organizers: Thomas Hillen (University of Alberta), Mark Lewis (University of Alberta), Yingfei Yi (University of Alberta)The purpose of this summer school is to focus on the interplay of dynamical and biological systems, developing the rich connectionbetween science and mathematics that has been so successful to date. Our focus will be on understanding the mathematical structure of dynamical systems that come from biological problems, and then relating the mathematical structures back to the biology to provide scientific insight. We will focus on five key areas: complex bionetworks, multi scale biological dynamics, biological waves, nonlinear dynamics of pattern formation, and disease dynamics. For each of the five key areas, we will invite 23 world leaders who are also excellent communicators to deliver a series of 24 onehour lectures. We expect an average of eight hours of lecture per subject area, spread over approximately two weeks.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Bay Area Discrete (BAD) Math Day 32
Organizers: Federico Ardila (San Francisco State University), Ralucca Gera (Naval Postgraduate School), Elizabeth Gross (San Jose State University), Angela Hicks (Stanford University), Carol Meyers (Lawrence Livermore National Laboratory), Rick Scott (University of Santa Clara), Erik Slivenken (University of California, Davis), Ellen Veomett (Saint Mary's College of California), Yan Zhang (University of California, Berkeley)Bay Area Discrete Math Days are oneday meetings aimed at facilitating communication between researchers and graduate students of discrete mathematics around the San Francisco Bay Area.These days happen semiannually and strive to create an informal atmosphere to talk about discrete mathematics. The term "discrete mathematics" is chosen to include at least the following topics: Algebraic and Enumerative Combinatorics, Discrete Geometry, Graph Theory, Coding and Design Theory, Combinatorial Aspects of Computational Algebra and Geometry, Combinatorial Optimization, Probabilistic Combinatorics, and Combinatorics in Mathematical Physics
Updated on May 06, 2017 01:18 AM PDT 
Workshop Critical Issues in Mathematics Education 2016: Observing, Evaluating and Improving Mathematics Teaching from the Early Grades through the University
Organizers: Hyman Bass (University of Michigan), Michael Driskill (Math for America ), LEAD Mark Hoover (University of Michigan), LEAD Deborah Hughes Hallett (University of Arizona), Danny Martin (University of Illinois at Chicago), Miriam Sherin (Northwestern University)The 2016 CIME workshop focuses directly on the teaching of mathematics at the university and precollege levels. Teaching is not easy to examine in disciplined ways because it is so familiar and seems so obvious. Although teaching shapes students’ opportunities to learn, what teachers are actually doing is difficult to observe and describe. This impedes work on improving teaching.
This workshop will offer the opportunity to study and talk closely about mathematics teaching through close observation and discussion of video tapes in a setting that will bring together professionals with a range of perspectives, knowledge, experience, and orientations. The goal of the workshop is to develop language and methods for describing, analyzing and evaluating what can be seen in the classroom, with the ultimate goal of helping us shape and improve teaching — our own and more broadly.
Four questions structure the highly interactive design of the workshop: What skills are needed for observing teaching in ways that inform improvement efforts? What is involved in observing teaching? What is the teacher saying and doing? What are students saying and doing? What is the mathematics at play? What else is happening? And what do these imply for teaching?
 How can the practice and use of observation be structured in order to improve mathematics teaching? What approaches are available? What are their strengths and weaknesses?
 Observationbased assessment of teaching: Why, what, and how? What are the risks?
 How can we develop and sustain a crossprofessional community that observes and evaluates teaching in such a way that different communities communicate with and learn from each other to support a cycle of improvement in the teaching of mathematics at all levels?
The workshop will provide a library of videos of mathematics teaching for study. In addition, participants are encouraged to submit a short video clip of their own teaching, together with a brief background commentary. These videos will provide a central text for our collective work on discussing and assessing mathematics teaching.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Modern Math Workshop 2015
Organizers: LEAD Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), Helen Chamberlin (Ohio State University), Ricardo Cortez (Tulane University), Sujit Ghosh (NC State University), Dagan Karp (Harvey Mudd College), Anne Pfister (MSRI  Mathematical Sciences Research Institute), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Ivelisse M. Rubio (University of Puerto Rico), Mariel Vazquez (University of California, Davis), Talithia Williams (Harvey Mudd College)As part of the Mathematical Sciences Collaborative Diversity Initiatives, nine mathematics institutes are pleased to host their annual SACNAS preconference event, the 2015 Modern Math Workshop (MMW). The Modern Math Workshop is intended to encourage minority undergraduates to pursue careers in the mathematical sciences and to assist undergraduates, graduate students and recent PhD’s in building their research networks.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Incompressible Fluid Flows at High Reynolds Number
Organizers: Jacob Bedrossian (University of Maryland), LEAD Vlad Vicol (Princeton University)The purpose of this two week workshop is to introduce graduate students to stateoftheart methods and results in mathematical fluid dynamics. In the first week, we will discuss the mathematical foundations and modern analysis aspects of the NavierStokes and Euler equations. In the second week, we will run two courses concurrently on the topics of inviscid limits and hydrodynamic stability. Specifically, one course will focus on boundary layers in high Reynolds number flows and the Prandtl equations while the other will focus on mixing and connections to turbulence. Through the lectures and associated problem sessions, the students will learn about a number of new analysis tools and principles of fluid mechanics that are not always taught in a graduate school curriculum.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Gaps between Primes and Analytic Number Theory
Organizers: Dimitris Koukoulopoulos (Université de Montréal), LEAD Emmanuel Kowalski (ETH Zurich), James Maynard (University of Oxford), Kannan Soundararajan (Stanford University)These courses will give students a full overview of the results of Zhang and Maynard on gaps between primes, and will provide them will a clear understanding of the tools involved. This will make accessible a significant part of modern analytic number theory. The lecturers will also make sure to include, within their course, examples and discussions going further than is strictly required to understand the proofs of Zhang and Maynard, e.g., in the direction of automorphic forms and the Riemann Hypothesis over finite fields.
Updated on May 06, 2017 01:18 AM PDT