Mathematical Sciences Research Institute

Home > Scientific > Upcoming

Upcoming Scientific Events

  1. Summer Graduate School Introduction to water waves [Virtual Summer Graduate School]

    Organizers: Mihaela Ifrim (University of Wisconsin-Madison), Daniel Tataru (University of California, Berkeley)
    Img 6168
    Overturning wave, artistic drawing by E. Ifrim

    Due to the COVID-19 pandemic, this summer school will be held online.

    The purpose of this two weeks school is to introduce graduate students to the state of the art methods and results in the study of incompressible Euler’s equations in general, and water waves in particular. This is a research area which is highly relevant to many real life problems, and in which substantial progress has been made in the last decade.


    The goal is to present the main current research directions in water waves. We will begin with the physical derivation of the equations, and present some of the analytic tools needed in study. The final goal will be two-fold, namely (i) to understand the local solvability of the Cauchy problem for water waves, as well as (ii) to describe the long time behavior of solutions.

    Through the lectures and associated problem sessions, students will learn about a number of new analysis tools which are not routinely taught in a graduate school curriculum. The goal is to help students acquire the knowledge needed in order to start research in water waves and Euler equations.

    Updated on Jun 07, 2020 11:09 PM PDT
  2. Program Random and Arithmetic Structures in Topology -- Virtual Semester

    Organizers: Nicolas Bergeron (École Normale Supérieure), Jeffrey Brock (Yale University), Alexander Furman (University of Illinois at Chicago), Yizhaq Gelander (Weizmann Institute of Science), Ursula Hamenstädt (Rheinische Friedrich-Wilhelms-Universität Bonn), Fanny Kassel (Institut des Hautes Études Scientifiques (IHES)), LEAD Alan Reid (Rice University)
    Msri image

    The use of dynamical invariants has long been a staple of geometry and topology, from rigidity theorems, to classification theorems, to the general study of lattices and of the mapping class group. More recently, random structures in topology and notions of probabilistic geometric convergence have played a critical role in testing the robustness of conjectures in the arithmetic setting. The program will focus on invariants in topology, geometry, and the dynamics of group actions linked to random constructions.

    Updated on May 26, 2020 10:50 AM PDT
  3. Program Decidability, definability and computability in number theory: Part 1 - Virtual Semester

    Organizers: Valentina Harizanov (George Washington University), Maryanthe Malliaris (University of Chicago), Barry Mazur (Harvard University), Russell Miller (Queens College, CUNY; CUNY, Graduate Center), Jonathan Pila (University of Oxford), LEAD Thomas Scanlon (University of California, Berkeley), Alexandra Shlapentokh (East Carolina University), Carlos Videla (Mount Royal University)
    Image edited
    Title page of Diophantus' Arithmetica - ETH Zurich

    This program is focused on the two-way interaction of logical ideas and techniques, such as definability from model theory and decidability from computability theory, with fundamental problems in number theory. These include analogues of Hilbert's tenth problem, isolating properties of fields of algebraic numbers which relate to undecidability, decision problems around linear recurrence and algebraic differential equations, the relation of transcendence results and conjectures to decidability and decision problems, and some problems in anabelian geometry and field arithmetic. We are interested in this specific interface across a range of problems and so intend to build a semester which is both more topically focused and more mathematically broad than a typical MSRI program.

    Updated on May 11, 2020 02:17 PM PDT
  4. Program Complementary Program 2020-21

    The Complementary Program has a limited number of memberships that are open to mathematicians whose interests are not closely related to the core programs; special consideration is given to mathematicians who are partners of an invited member of a core program.

    Updated on Nov 20, 2019 01:47 PM PST
  5. Program Mathematical problems in fluid dynamics

    Organizers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS)), Hajer Bhouri (Université Paris-Est Créteil Val-de-Marne; Centre National de la Recherche Scientifique (CNRS)), Mihaela Ifrim (University of Wisconsin-Madison), Igor Kukavica (University of Southern California), David Lannes (Université de Bordeaux I; Centre National de la Recherche Scientifique (CNRS)), LEAD Daniel Tataru (University of California, Berkeley)

    Fluid dynamics is one of the classical areas of partial differential equations, and has been the subject of extensive research over hundreds of years. It is perhaps one of the most challenging and exciting fields of scientific pursuit simply because of the complexity of the subject and the endless breadth of applications.

    The focus of the program is on incompressible fluids, where water is a primary example. The fundamental equations in this area are the well-known Euler equations for inviscid fluids, and the Navier-Stokes equations for the viscous fluids. Relating the two is the problem of the zero viscosity limit, and its connection to the phenomena of turbulence. Water waves, or more generally interface problems in fluids, represent another target area for the program. Both theoretical and numerical aspects will be considered.

    Updated on Apr 25, 2019 02:32 PM PDT
  6. Workshop Connections Workshop: Mathematical problems in fluid dynamics

    Organizers: Hajer Bhouri (Université Paris-Est Créteil Val-de-Marne; Centre National de la Recherche Scientifique (CNRS)), Juhi Jang (University of Southern California), LEAD Anna Mazzucato (Pennsylvania State University), Sijue Wu (University of Michigan)
    Image by Noomann Bassou

    This workshop will feature talks by prominent female mathematicians whose research lies in and interfaces with mathematical fluids featuring water waves,  free boundaries, fluid structures,  viscous fluids and turbulence. The talks will be appropriate for graduate students, post-docs, and researchers in areas above mentioned. There will also be a panel discussion and a contributed poster session. This workshop is open to all mathematicians.

    Updated on Feb 20, 2020 11:31 AM PST
  7. Workshop Introductory Workshop: Mathematical problems in fluid dynamics

    Organizers: Nicolas Burq (Université de Paris XI), Anne-Laure Dalibard (Université de Paris VI (Pierre et Marie Curie)), Jean Marc Delort (Université de Paris XIII (Paris-Nord)), LEAD Mihaela Ifrim (University of Wisconsin-Madison), Irena Lasiecka (University of Memphis), Vladimir Sverak (University of Minnesota Twin Cities)
    945 image

    The workshop will address topics in the PDE analysis of the basic equations of the incompressible fluid dynamics (the Euler equations for inviscid flows, the Navier Stokes equations for viscous flows), interface problems (water waves), and other related equations. Open problems and connections to related branches of mathematics will be discussed, including the phenomena of turbulence and the zero viscosity limit. Both theoretical and numerical aspects of these topics will be considered. There will be some colloquium style lectures as well as shorter research talks. The workshop is open to all.

    Updated on Nov 25, 2019 01:09 PM PST
  8. Workshop Recent Developments in Fluid Dynamics

    Organizers: Thomas Alazard (Ecole Normale Supérieure Paris-Saclay; Centre National de la Recherche Scientifique (CNRS)), Hajer Bhouri (Université Paris-Est Créteil Val-de-Marne; Centre National de la Recherche Scientifique (CNRS)), Mihaela Ifrim (University of Wisconsin-Madison), Igor Kukavica (University of Southern California), David Lannes (Université de Bordeaux I; Centre National de la Recherche Scientifique (CNRS)), LEAD Daniel Tataru (University of California, Berkeley)
    Water waves

    The aim of the workshop is to bring together a broad array of researchers working on incompressible fluid dynamics. Some of the key topics to be covered are Euler flows, Navier Stokes equations as well as water wave flows and associated model equations. Some emphasis will also be placed on numerical analysis of the above evolutions.

    Updated on Jun 18, 2019 09:54 AM PDT
  9. Workshop Hot Topics: Topological Insights in Neuroscience

    Organizers: Carina Curto (Pennsylvania State University), Chad Giusti (University of Delaware), LEAD Kathryn Hess (École Polytechnique Fédérale de Lausanne (EPFL)), Ran Levi (University of Aberdeen)
    2020 21 topological insights neuroscience image hess.2019.02.27
    Image created by Nicolas Antille, of the visualization team of the Blue Brain Project at EPFL

    The talks in this workshop will present a wide array of current applications of topology in neuroscience, including classification and synthesis of neuron morphologies, analysis of synaptic plasticity, algebraic analysis of the neural code, topological analysis of neural networks and their dynamics, topological decoding of neural activity, diagnosis of traumatic brain injuries, and topological biomarkers for psychiatric disease. Some of the talks will be devoted to promising new directions in algebraic topology that have been inspired by neuroscience.

    Updated on Jun 25, 2020 03:57 PM PDT
  10. Summer Graduate School Foundations and Frontiers of Probabilistic Proofs (Zurich, Switzerland)

    Organizers: Alessandro Chiesa (University of California, Berkeley), Tom Gur (University of Warwick)
    Proofs main logo
    Several executions of a 3-dimensional sumcheck protocol with a random order of directions (thanks to Dev Ojha for creating the diagram)

    Due to the COVID-19 pandemic, this summer school is taking place in summer 2021.

    Proofs are at the foundations of mathematics. Viewed through the lens of theoretical computer science, verifying the correctness of a mathematical proof is a fundamental computational task. Indeed, the P versus NP problem, which deals precisely with the complexity of proof verification, is one of the most important open problems in all of mathematics.

    The complexity-theoretic study of proof verification has led to exciting reenvisionings of mathematical proofs. For example, probabilistically checkable proofs (PCPs) admit local-to-global structure that allows verifying a proof by reading only a minuscule portion of it. As another example, interactive proofs allow for verification via a conversation between a prover and a verifier, instead of the traditional static sequence of logical statements. The study of such proof systems has drawn upon deep mathematical tools to derive numerous applications to the theory of computation and beyond.

    In recent years, such probabilistic proofs received much attention due to a new motivation, delegation of computation, which is the emphasis of this summer school. This paradigm admits ultra-fast protocols that allow one party to check the correctness of the computation performed by another, untrusted, party. These protocols have even been realized within recently-deployed technology, for example, as part of cryptographic constructions known as succinct non-interactive arguments of knowledge (SNARKs).

    This summer school will provide an introduction to the field of probabilistic proofs and the beautiful mathematics behind it, as well as prepare students for conducting cutting-edge research in this area.

    Updated on May 04, 2020 11:36 AM PDT
  11. Program Universality and Integrability in Random Matrix Theory and Interacting Particle Systems

    Organizers: LEAD Ivan Corwin (Columbia University), Percy Deift (New York University, Courant Institute), Ioana Dumitriu (University of Washington), Alice Guionnet (École Normale Supérieure de Lyon), Alexander Its (Indiana University-Purdue University Indianapolis), Herbert Spohn (Technische Universität München), Horng-Tzer Yau (Harvard University)

    The past decade has seen tremendous progress in understanding the behavior of large random matrices and interacting particle systems. Complementary methods have emerged to prove universality of these behaviors, as well as to probe their precise nature using integrable, or exactly solvable models. This program seeks to reinforce and expand the fruitful interaction at the interface of these areas, as well as to showcase some of the important developments and applications of the past decade.

    Updated on Apr 20, 2020 11:12 AM PDT
  12. Workshop Connections Workshop: Universality and Integrability in Random Matrix Theory and Interacting Particle Systems

    Organizers: LEAD Ioana Dumitriu (University of Washington), Alisa Knizel (Columbia University)
    An illustration of the TASEP interface growth by Leonid Petrov and Hao Yu Li.

    This workshop will focus on cutting-edge research in random matrices and integrable probability. We will explore connections with other branches of mathematics and applications to sciences and engineering. The workshop will feature presentations by both leading researchers and promising newcomers. We will have a panel discussion of topics relevant to junior researchers, women, and minorities; a poster session for students and recent PhDs; and other social events. This workshop is open to and welcomes all mathematicians.

    Updated on May 06, 2020 11:42 AM PDT
  13. Workshop Introductory Workshop: Universality and Integrability in Random Matrix Theory and Interacting Particle Systems

    Organizers: LEAD Gerard Ben Arous (New York University, Courant Institute), Alice Guionnet (École Normale Supérieure de Lyon), Sylvia Serfaty (New York University, Courant Institute), Horng-Tzer Yau (Harvard University)

    The introductory workshop aims at providing participants with an overview of some of the recent developments in the topics of the semester, with a particular emphasis on universality and applications. This includes universality for Wigner matrices and band matrices and quantum unique ergodicity, universality for beta ensembles and log/coulomb gases, KPZ universality class, universality in interacting particle systems, the connection between random matrices and number theory.

    Updated on Mar 19, 2020 11:30 AM PDT
  14. Workshop Integrable structures in random matrix theory and beyond

    Organizers: LEAD Jinho Baik (University of Michigan), Alexei Borodin (Massachusetts Institute of Technology), Tamara Grava (University of Bristol; SISSA), Alexander Its (Indiana University-Purdue University Indianapolis), Sandrine Péché (Université de Paris VII (Denis Diderot))
    Image by Alexei Borodin.

    This workshop will focus on the integrable aspect of random matrix theory and other related probability models such as random tilings, directed polymers, and interacting particle systems. The emphasis is on communicating diverse algebraic structures in these areas which allow the asymptotic analysis possible. Some of such structures are determinantal point processes, Toeplitz and Hankel determinants, Bethe ansatz, Yang-Baxter equation, Karlin-McGregor formula, Macdonald process, and stochastic six vertex model.

    Updated on Jul 31, 2019 03:22 PM PDT
  15. Program The Analysis and Geometry of Random Spaces

    Organizers: LEAD Mario Bonk (University of California, Los Angeles), Joan Lind (University of Tennessee), Steffen Rohde (University of Washington), Eero Saksman (University of Helsinki), Fredrik Viklund (Royal Institute of Technology), Jang-Mei Wu (University of Illinois at Urbana-Champaign)

    This program is devoted to the investigation of universal analytic and geometric objects that arise from natural probabilistic constructions, often motivated by models in mathematical physics. Prominent examples for recent developments are the Schramm-Loewner evolution, the continuum random tree, Bernoulli percolation on the integers,  random surfaces produced by Liouville Quantum Gravity, and Jordan curves and dendrites obtained from random conformal weldings and laminations. The lack of regularity of these random structures often results in a failure of classical methods of analysis. One goal of this program is to enrich the analytic toolbox to better handle these rough structures.

    Updated on Nov 20, 2019 02:12 PM PST
  16. Program Complex Dynamics: from special families to natural generalizations in one and several variables

    Organizers: LEAD Sarah Koch (University of Michigan), Jasmin Raissy (Institut de Mathématiques de Toulouse), Dierk Schleicher (Université d'Aix-Marseille (AMU)), Mitsuhiro Shishikura (Kyoto University), Dylan Thurston (Indiana University)
    The mating of these two dendritic Julia sets is equal to the Julia set of a rational map of degree 2; that Julia set is equal to the entire Riemann sphere.

    Holomorphic dynamics is a vibrant field of mathematics that has seen profound progress over the past 40 years. It has numerous interconnections to other fields of mathematics and beyond. 

    Our semester will focus on three selected classes of dynamical systems: rational maps (postcritically finite and beyond); transcendental maps; and maps in several complex variables. We will put particular emphasis on the interactions between each these, and on connections with adjacent areas of mathematics. 

    Updated on Nov 20, 2019 02:12 PM PST
  17. Program Floer Homotopy Theory

    Organizers: Mohammed Abouzaid (Columbia University), Andrew Blumberg (University of Texas, Austin), Kristen Hendricks (Rutgers University), Robert Lipshitz (University of Oregon), LEAD Ciprian Manolescu (Stanford University), Nathalie Wahl (University of Copenhagen)
    335 image
    Illustrated by Nathalie Wahl

    The development of Floer theory in its early years can be seen as a parallel to the emergence of algebraic topology in the first half of the 20th century, going from counting invariants to homology groups, and beyond that to the construction of algebraic structures on these homology groups and their underlying chain complexes.  In continuing work that started in the latter part of the 20th century, algebraic topologists and homotopy theorists have developed deep methods for refining these constructions, motivated in large part by the application of understanding the classification of manifolds. The goal of this program is to relate these developments to Floer theory with the dual aims of (i) making progress in understanding symplectic and low-dimensional topology, and (ii) providing a new set of geometrically motivated questions in homotopy theory. 

    Updated on Nov 25, 2019 01:27 PM PST
  18. Program Analytic and Geometric Aspects of Gauge Theory

    Organizers: Laura Fredrickson (Stanford University), Rafe Mazzeo (Stanford University), Tomasz Mrowka (Massachusetts Institute of Technology), Laura Schaposnik (University of Illinois at Chicago), LEAD Thomas Walpuski (Michigan State University)
    Gt 2022 23 fall image.2019.01.07. orig   fixed999

    The mathematics and physics around gauge theory have, since their first interaction in the mid 1970’s, prompted tremendous developments in both mathematics and physics.  Deep and fundamental tools in partial differential equations have been developed to provide rigorous foundations for the mathematical study of gauge theories.  This led to ongoing revolutions in the understanding of manifolds of dimensions 3 and 4 and presaged the development of symplectic topology.  Ideas from quantum field theory have provided deep insights into new directions and conjectures on the structure of gauge theories and suggested many potential applications.  The focus of this program will be those parts of gauge theory which hold promise for new applications to geometry and topology and require development of new analytic tools for their study.

    Updated on Feb 05, 2020 10:22 AM PST
  19. Program Algebraic Cycles, L-Values, and Euler Systems

    Organizers: Henri Darmon (McGill University), Ellen Eischen (University of Oregon), LEAD Benjamin Howard (Boston College), David Loeffler (University of Warwick), Christopher Skinner (Princeton University), Sarah Zerbes (University College), Wei Zhang (Massachusetts Institute of Technology)
    Some Gaussian periods for the 255,255-th cyclotomic extension. Image credit: E. Eischen, based on earlier work by W. Duke, S. R. Garcia, T. Hyde, and R. Lutz

    The fundamental conjecture of Birch and Swinnerton-Dyer relating the Mordell–Weil ranks of elliptic curves to their L-functions is one of the most important and motivating problems in number theory. It resides at the heart of a collection of important conjectures (due especially to Deligne, Beilinson, Bloch and Kato) that connect values of L-functions and their leading terms to cycles and Galois cohomology groups. 

    The study of special algebraic cycles on Shimura varieties has led to progress in our understanding of these conjectures. The arithmetic intersection numbers and the p-adic regulators of special cycles are directly related to the values and derivatives of L-functions, as shown in the pioneering theorem of Gross-Zagier and its p-adic avatars for Heegner points on modular curves. The cohomology classes of special cycles (and related constructions such as Eisenstein classes) form the foundation of the theory of Euler systems, providing one of the most powerful methods known to prove vanishing or finiteness results for Selmer groups of Galois representations. 

    The goal of this semester is to bring together researchers working on different aspects of this young but fast-developing subject, and to make progress on understanding the mysterious relations between L-functions, Euler systems, and algebraic cycles.

    Updated on Feb 25, 2020 11:41 AM PST