Logo

Mathematical Sciences Research Institute

Home > Scientific > Upcoming

Upcoming Scientific Events

  1. Workshop Introductory Workshop: Hamiltonian systems, from topology to applications through analysis

    Organizers: Marie-Claude Arnaud (Université d'Avignon), Wilfrid Gangbo (University of California, Los Angeles), LEAD Vadim Kaloshin (University of Maryland), Robert Littlejohn (University of California, Berkeley)

    The introductory workshop will cover the large variety of topics of the semester: weak KAM theory, Mather theory, Hamilton-Jacobi equations, integrable systems and integrable planar billiards, instability formation for nearly integrable systems, celestial mechanics, billiards, spectral rigidity, Astrodynamics, motion of satellites, Plasma Physics, Accelerator Physics, Theoretical Chemistry, and Atomic Physics.

    The workshop will consist of approximately 18 lectures to introduce the main topics relevant to the semester. That will leave time for discussions and exchange between the participants.

    Updated on Aug 02, 2018 09:47 AM PDT
  2. Workshop Hot Topics: Shape and Structure of Materials

    Organizers: Myfanwy Evans (TU Berlin), LEAD Frank Lutz (TU Berlin), Dmitriy Morozov (Lawrence Berkeley National Laboratory), James Sethian (University of California, Berkeley), Ileana Streinu (Smith College)
    Msri lbnl pic 3
    Tangled honeycomb networks | and the Advanced Light Source at LBNL

    The fascinating and complicated microstructures of materials that are now visible through advanced imaging techniques challenge the frontiers of characterisation and understanding. At the same time, developments in modern geometric and topological techniques are beginning to illuminate important features of material structures, while the microstructures themselves and the analysis and prediction of their macroscopic properties are inspiring new directions in pure and applied mathematics. In a collaboration with the Lawrence Berkeley National Laboratory (LBNL), this workshop aims at intensifying the interaction of mathematicians with material scientists, physicists and chemists on the structural description and design of materials.

    Updated on Aug 17, 2018 04:01 PM PDT
  3. Workshop Hamiltonian systems, from topology to applications through analysis I

    Organizers: Alessandra Celletti (University of Rome Tor Vergata), Rafael de la Llave (Georgia Institute of Technology), Diego del-Castillo-Negrete (Oak Ridge National Laboratory), Lawrence Evans (University of California, Berkeley), LEAD Philip Morrison (University of Texas at Austin), Sergei Tabachnikov (Pennsylvania State University), Amie Wilkinson (University of Chicago)
    Web image
    Depiction of the standard nontwist map (courtesy of G.Miloshevich).

    This is a main workshop of the program “Hamiltonian systems, from topology to applications through analysis” and is a companion to the workshop next month (November 26-30).  Both workshops will feature current developments pertaining to finite and infinite-dimensional Hamiltonian systems, with a mix of rigorous theory and applications.  A broad range of topics will be included, e.g., existence of and transport about invariant sets (Arnold diffusion, KAM, etc.),  techniques for projection/reduction of infinite to finite systems, and the role of topological invariants in applications.

    Updated on Jun 19, 2018 03:21 PM PDT
  4. Workshop 2018 Modern Math Workshop

    Organizers: Hélène Barcelo (MSRI - Mathematical Sciences Research Institute), LEAD Elvan Ceyhan (SAMSI - Statistical and Applied Mathematical Sciences Institute), Leslie McClure (SAMSI - Statistical and Applied Mathematical Sciences Institute), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))

    The Mathematical Sciences Diversity Initiative holds a Modern Math Workshop (MMW) prior to the SACNAS National Conference each year. The 2018 MMW will be hosted by SAMSI at the Henry B. Gonzalez Convention Center, San Antonio, Texas on October 10th and 11th, 2018. This workshop is intended to encourage undergraduates, graduate students and recent PhDs from underrepresented minority groups to pursue careers in the mathematical sciences and build research and mentoring networks. The Modern Math Workshop is a pre-conference event at the SACNAS National Conference. The MMW includes a keynote lecture, mini-courses, research talks, a question and answer session and a reception.

    Updated on Mar 15, 2018 12:33 PM PDT
  5. Workshop 2018 Blackwell-Tapia Conference and Award Banquet

    The NSF Mathematical Sciences Institutes Diversity Committee hosts the 2018 Blackwell-Tapia Conference and Awards Ceremony. This is the ninth conference since 2000, held every other year, with the location rotating among NSF Mathematics Institutes. The conference and prize honors David Blackwell, the first African-American member of the National Academy of Science, and Richard Tapia, winner of the National Medal of Science in 2010, two seminal figures who inspired a generation of African-American, Native American and Latino/Latina students to pursue careers in mathematics. The Blackwell-Tapia Prize recognizes a mathematician who has contributed significantly to research in his or her area of expertise, and who has served as a role model for mathematical scientists and students from underrepresented minority groups, or has contributed in other significant ways to addressing the problem of underrepresentation of minorities in math.

    The 2018 recipient of the Blackwell-Tapia Prize is Dr. Ronald E. Mickens, the Distinguished Fuller E. Callaway Professor in the Department of Physics at Clark Atlanta University.

    The conference will include scientific talks, poster presentations, panel discussions, ample opportunities for networking, and the awarding of the Blackwell-Tapia Prize. Participants are invited from all career stages and will represent institutions of all sizes across the country, including Puerto Rico.

    Updated on May 08, 2018 12:46 PM PDT
  6. Workshop Hamiltonian systems, from topology to applications through analysis II

    Organizers: Alessandra Celletti (University of Rome Tor Vergata), Rafael de la Llave (Georgia Institute of Technology), Diego del-Castillo-Negrete (Oak Ridge National Laboratory), Lawrence Evans (University of California, Berkeley), Philip Morrison (University of Texas at Austin), Sergei Tabachnikov (Pennsylvania State University), Amie Wilkinson (University of Chicago)
    Web image
    An invariant set inhibiting transport in a two degree-of-freedom Hamiltonian system (courtesy J. D. Szezech)

    This is a main workshop of the program “Hamiltonian systems, from topology to applications through analysis.”  It  will feature current developments pertaining to finite and infinite-dimensional Hamiltonian systems, with a mix of rigorous theory and applications.  A broad range of topics will be included, e.g., existence of and transport about invariant sets (Arnold diffusion, KAM, etc.),  techniques for projection/reduction of infinite to finite systems, and the role of topological invariants in applications.

    Updated on Jul 13, 2018 01:45 PM PDT
  7. Program Derived Algebraic Geometry

    Organizers: Julie Bergner (University of Virginia), LEAD Bhargav Bhatt (University of Michigan), Dennis Gaitsgory (Harvard University), David Nadler (University of California, Berkeley), Nikita Rozenblyum (University of Chicago), Peter Scholze (Universität Bonn), Gabriele Vezzosi (Università di Firenze)

    Derived algebraic geometry is an extension of algebraic geometry that provides a convenient framework for directly treating non-generic geometric situations (such as non-transverse intersections in intersection theory), in lieu of the more traditional perturbative approaches (such as the “moving” lemma). This direct approach, in addition to being conceptually satisfying, has the distinct advantage of preserving the symmetries of the situation, which makes it much more applicable. In particular, in recent years, such techniques have found applications in diverse areas of mathematics, ranging from arithmetic geometry, mathematical physics, geometric representation theory, and homotopy theory. This semester long program will be dedicated to exploring these directions further, and finding new connections.

    Updated on Nov 02, 2016 04:30 PM PDT
  8. Program Birational Geometry and Moduli Spaces

    Organizers: Antonella Grassi (University of Pennsylvania), LEAD Christopher Hacon (University of Utah), Sándor Kovács (University of Washington), Mircea Mustaţă (University of Michigan), Martin Olsson (University of California, Berkeley)

    Birational Geometry and Moduli Spaces are two important areas of Algebraic Geometry that have recently witnessed a flurry of activity and substantial progress on many fundamental open questions. In this program we aim to  bring together key researchers in these and related areas to highlight the recent exciting progress and to explore future avenues of research.
     
    This program will focus on the following themes: Geometry and Derived Categories, Birational Algebraic Geometry, Moduli Spaces of Stable Varieties, Geometry in Characteristic p>0, and Applications of Algebraic Geometry: Elliptic Fibrations of Calabi-Yau Varieties in Geometry, Arithmetic and the Physics of String Theory

    Updated on Jan 31, 2017 07:46 PM PST
  9. Workshop Connections for Women: Derived Algebraic Geometry, Birational Geometry and Moduli Spaces

    Organizers: Julie Bergner (University of Virginia), LEAD Antonella Grassi (University of Pennsylvania), Bianca Viray (University of Washington), Kirsten Wickelgren (Georgia Institute of Technology)

    This workshop will be on different aspects of Algebraic Geometry relating Derived Algebraic Geometry and Birational Geometry. In particular the workshop will focus on connections to other branches of mathematics and open problems. There will be some colloquium style lectures as well as shorter research talks. The workshop is open to all.

    Updated on May 30, 2018 09:30 AM PDT
  10. Workshop Introductory Workshop: Derived Algebraic Geometry and Birational Geometry and Moduli Spaces

    Organizers: Julie Bergner (University of Virginia), Bhargav Bhatt (University of Michigan), Christopher Hacon (University of Utah), LEAD Mircea Mustaţă (University of Michigan), Gabriele Vezzosi (Università di Firenze)

    The workshop will survey several areas of algebraic geometry, providing an introduction to the two main programs hosted by MSRI in Spring 2019. It will consist of 7 expository mini-courses and 7 separate lectures, each given by top experts in the field. 

    The focus of the workshop will be the recent progress in derived algebraic geometry, birational geometry and moduli spaces. The lectures will be aimed at a wide audience including advanced graduate students and postdocs with a background in algebraic geometry.
     

    Updated on Jul 25, 2018 03:02 PM PDT
  11. Workshop Derived algebraic geometry and its applications

    Organizers: Dennis Gaitsgory (Harvard University), David Nadler (University of California, Berkeley), LEAD Nikita Rozenblyum (University of Chicago), Peter Scholze (Universität Bonn), Brooke Shipley (University of Illinois at Chicago)

    This workshop will bring together researchers at various frontiers, including arithmetic geometry, representation theory, mathematical physics, and homotopy theory, where derived algebraic geometry has had recent impact. The aim will be to explain the ideas and tools behind recent progress and to advertise appealing questions. A focus will be on moduli spaces, for example of principal bundles with decorations as arise in many settings, and their natural structures.    

    Updated on Apr 25, 2018 08:53 AM PDT
  12. Workshop Hot Topics: Recent progress in Langlands Program

    Organizers: Mark Kisin (Harvard University), Elena Mantovan (California Institute of Technology), LEAD Xinwen Zhu (California Institute of Technology)

    The purpose of the workshop is to explain Vincent Lafforgue's ground breaking work, constructing the automorphic to Galois direction of the Langlands correspondence for function fields. There will also be a number of talks on more recent developments and related results.

    Updated on Aug 06, 2018 01:49 PM PDT
  13. Workshop Recent Progress in Moduli Theory

    Organizers: Lucia Caporaso (University of Rome, Roma 3), LEAD Sándor Kovács (University of Washington), Martin Olsson (University of California, Berkeley)
    Moduli b

    This workshop will be focused on presenting the latest developments in moduli theory, including (but not restricted to) recent advances in compactifications of moduli spaces of higher dimensional varieties, the birational geometry of moduli spaces, abstract methods including stacks, stability criteria, and applications in other disciplines. 

    Updated on Nov 02, 2017 09:59 AM PDT
  14. Summer Graduate School Commutative Algebra and its Interaction with Algebraic Geometry

    Organizers: Craig Huneke (University of Virginia), Sonja Mapes (University of Notre Dame), Juan Migliore (University of Notre Dame), LEAD Claudia Polini (University of Notre Dame), Claudiu Raicu (University of Notre Dame)
    Image
    The figure represents a blow-up. The so called blow-up algebras or Rees rings are the algebraic realizations of such blow-ups.

    Linkage is a method for classifying ideals in local rings. Residual intersections is a generalization of linkage to the case where the two `linked' ideals  need not have the same codimension. Residual intersections are ubiquitous: they play an important role in the study of blowups, branch and multiple point loci, secant varieties, and Gauss images; they appear naturally in intersection theory; and they have close connections with integral closures of ideals. 

    Commutative algebraists have long used the Frobenius or p-th power map to study commutative rings containing a finite fi eld. The theory of tight closure and test ideals has widespread applications to the study of symbolic powers and to Briancon-Skoda type theorems for equi-characteristic rings.

    Numerical conditions for the integral dependence of ideals and modules have a wealth of applications, not the least of which is in equisingularity theory. There is a long history of generalized criteria for integral dependence of ideals and modules based on variants of the Hilbert-Samuel and the Buchsbaum-Rim multiplicity that still require some remnants of finite length assumptions.

    The Rees ring and the special fiber ring of an ideal arise in the process of blowing up a variety along a subvariety. Rees rings and special fiber rings also describe, respectively, the graphs and the images of rational maps between projective spaces. A difficult open problem in commutative algebra, algebraic geometry, elimination theory, and geometric modeling is to determine explicitly the equations defining graphs and images of rational maps.

    The school will consist of the following four courses with exercise sessions plus a Macaulay2 workshop

    • Linkage and residual intersections
    • Characteristic p methods and applications
    • Blowup algebras
    • Multiplicity theory

    Updated on Aug 09, 2018 12:27 PM PDT
  15. Summer Graduate School Random and arithmetic structures in topology

    Organizers: LEAD Alex Furman (University of Illinois at Chicago), Tsachik Gelander (Weizmann Institute of Science)
    Blurred 016

    The study of locally symmetric manifolds, such as closed hyperbolic manifolds, involves geometry of the corresponding symmetric space, topology of towers of its finite covers, and number-theoretic aspects that are relevant to possible constructions.
    The workshop will provide an introduction to these and closely related topics such as lattices, invariant random subgroups, and homological methods.

    Updated on Apr 20, 2018 03:02 PM PDT
  16. MSRI-UP MSRI-UP 2019: Combinatorics and Discrete Mathematics

    Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Franco (Queensborough Community College (CUNY); MSRI - Mathematical Sciences Research Institute), LEAD Rebecca Garcia (Sam Houston State University), Pamela Harris (Williams College), Suzanne Weekes (Worcester Polytechnic Institute)

    The MSRI-UP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.

    In 2019, MSRI-Up will focus on the application of combinatorial arguments and techniques to enumerate, examine, and investigate the existence of discrete mathematical structures with certain properties. The areas of interest for these applications encompass a wide range of mathematical fields and will include algebra, number theory, and graph theory, through weight multiplicity computations, the study of vector partition functions, and graph domination problems, respectively. The research program will be led by Dr. Pamela E. Harris, Assistant Professor of Mathematics at Williams College.

    Updated on Jul 18, 2018 09:41 AM PDT
  17. Summer Graduate School Representation stability

    Organizers: Thomas Church (Stanford University), LEAD Andrew Snowden (University of Michigan), Jenny Wilson (Stanford University)
    Image
    An illustration of an adaptation of Quillen's classical homological stability spectral sequence argument

    This summer school will give an introduction to representation stability, the study of algebraic structural properties and stability phenomena exhibited by sequences of representations of finite or classical groups -- including sequences arising in connection to hyperplane arrangements, configuration spaces, mapping class groups, arithmetic groups, classical representation theory, Deligne categories, and twisted commutative algebras.  Representation stability incorporates tools from commutative algebra, category theory, representation theory, algebraic combinatorics, algebraic geometry, and algebraic topology. This workshop will assume minimal prerequisites, and students in varied disciplines are encouraged to apply. 

    Updated on Aug 03, 2018 11:17 AM PDT
  18. Summer Graduate School Séminaire de Mathématiques Supérieures 2019: Current trends in Symplectic Topology

    Organizers: Octav Cornea (Université de Montréal), Yakov Eliashberg (Stanford University), Michael Hutchings (University of California, Berkeley), Egor Shelukhin (Université de Montréal)

    Symplectic topology is a fast developing branch of geometry that has seen phenomenal growth in the last twenty years. This two weeks long summer school, organized in the setting of the Séminaire de Mathématiques Supérieures, intends to survey some of the key directions of development in the subject today thus covering: advances in homological mirror symmetry; applications to hamiltonian dynamics; persistent homology phenomena; implications of flexibility and the dichotomy flexibility/rigidity; legendrian contact homology; embedded contact homology and four-dimensional holomorphic techniques and others. With the collaboration of many of the top researchers in the field today, the school intends to serve as an introduction and guideline to students and young researchers who are interested in accessing this diverse subject. 

    Updated on Jul 31, 2018 11:54 AM PDT
  19. Summer Graduate School Geometric Group Theory

    Organizers: LEAD Rita Jiménez Rolland (Instituto de Matematicás, UNAM-Oaxaca), LEAD Pierre Py (Instituto de Matematicás, UNAM-Ciudad Universitaria)
    Image
    Rips's δ-thin triangle condition for Gromov hyperbolicity of metric spaces (Stomatapoll)

    Geometric group theory studies discrete groups by understanding the connections between algebraic properties of these groups and topological and geometric properties of the spaces on which they act. The aim of this summer school is to  introduce graduate students to specific central topics and recent developments in geometric group theory. The school will also include students presentations to give the participants an opportunity to practice their speaking skills in mathematics.  Finally, we hope that this meeting will help connect Latin American students with their American and Canadian counterparts in an environment that encourages discussion and collaboration. 

    Updated on Aug 06, 2018 11:13 AM PDT
  20. Summer Graduate School Polynomial Method

    Organizers: Adam Sheffer (California Institute of Technology), LEAD Joshua Zahl (University of British Columbia)
    Twolines3d
    from distinct distances in the plane to line incidences in R^3

    In the past eight years, a number of longstanding open problems in combinatorics were resolved using a new set of algebraic techniques. In this summer school, we will discuss these new techniques as well as some exciting recent developments

    Updated on Jun 19, 2018 04:57 PM PDT
  21. Summer Graduate School Recent topics on well-posedness and stability of incompressible fluid and related topics

    Organizers: LEAD Yoshikazu Giga (University of Tokyo), Maria Schonbek (University of California, Santa Cruz), Tsuyoshi Yoneda (University of Tokyo)
    Image
    Fluid-flow stream function color-coded by vorticity in 3D flat torus calculated by K. Nakai (The University of Tokyo)

    The purpose of the workshop is to introduce graduate students to fundamental results on the Navier-Stokes and the Euler equations, with special emphasis on the solvability of its initial value problem with rough initial data as well as the large time behavior of a solution. These topics have long research history. However, recent studies clarify the problems from a broad point of view, not only from analysis but also from detailed studies of orbit of the flow.

    Updated on Jul 31, 2018 11:48 AM PDT
  22. Summer Graduate School Toric Varieties in Taipei

    Organizers: David Cox (University of Massachusetts, Amherst), Henry Schenck (Iowa State University)
    Firstchoice cropped
    This simplicial fan in 3-dimensional space

    Toric varieties are algebraic varieties defined by combinatorial data, and there is a wonderful interplay between algebra, combinatorics and geometry involved in their study. Many of the key concepts of abstract algebraic geometry (for example, constructing a variety by gluing affine pieces) have very concrete interpretations in the toric case, making toric varieties an ideal tool for introducing students to abstruse concepts.

    Updated on Jul 30, 2018 11:01 AM PDT
  23. Summer Graduate School H-Principle (INdAM)

    Organizers: LEAD Emmy Murphy (Northwestern University), Takashi Tsuboi (University of Tokyo)
    072 04 small
    The image of a large sphere isometrically embedded into a small space through a C^1 embedding. (Attributions: E. Bartzos, V. Borrelli, R. Denis, F. Lazarus, D. Rohmer, B. Thibert)

    This two week summer school will introduce graduate students to the theory of h-principles.  After building up the theory from basic smooth topology, we will focus on more recent developments of the theory, particularly applications to symplectic and contact geometry, fluid dynamics, and foliation theory.

    Updated on Jun 26, 2018 09:00 AM PDT
  24. Summer Graduate School Mathematics of Machine Learning (Microsoft)

    Organizers: Sebastien Bubeck (Microsoft Research), Anna Karlin (University of Washington), Yuval Peres (University of California, Berkeley), Adith Swaminathan (Microsoft Research)
    Image
    Popular visualization of the MNIST dataset

    Learning theory is a rich field at the intersection of statistics, probability, computer science, and optimization. Over the last decades the statistical learning approach has been successfully applied to many problems of great interest, such as bioinformatics, computer vision, speech processing, robotics, and information retrieval. These impressive successes relied crucially on the mathematical foundation of statistical learning.

    Recently, deep neural networks have demonstrated stunning empirical results across many applications like vision, natural language processing, and reinforcement learning. The field is now booming with new mathematical problems, and in particular, the challenge of providing theoretical foundations for deep learning techniques is still largely open. On the other hand, learning theory already has a rich history, with many beautiful connections to various areas of mathematics (e.g., probability theory, high dimensional geometry, game theory). The purpose of the summer school is to introduce graduate students (and advanced undergraduates) to these foundational results, as well as to expose them to the new and exciting modern challenges that arise in deep learning and reinforcement learning.

    Updated on Jul 26, 2018 11:38 AM PDT
  25. Program Holomorphic Differentials in Mathematics and Physics

    Organizers: LEAD Jayadev Athreya (University of Washington), Steven Bradlow (University of Illinois at Urbana-Champaign), Sergei Gukov (California Institute of Technology), Andrew Neitzke (University of Texas, Austin), Anna Wienhard (Ruprecht-Karls-Universität Heidelberg), Anton Zorich (Institut de Mathematiques de Jussieu)
    Quadmesh2
    Some holomorphic differentials on a genus 2 surface, with close up views of singular points, image courtesy Jian Jiang.

    Holomorphic differentials on Riemann surfaces have long held a distinguished place in low dimensional geometry, dynamics and representation theory. Recently it has become apparent that they constitute a common feature of several other highly active areas of current research in mathematics and also at the interface with physics. In some cases the areas themselves (such as stability conditions on Fukaya-type categories, links to quantum integrable systems, or the physically derived construction of so-called spectral networks) are new, while in others the novelty lies more in the role of the holomorphic differentials (for example in the study of billiards in polygons, special - Hitchin or higher Teichmuller - components of representation varieties, asymptotic properties of Higgs bundle moduli spaces, or in new interactions with algebraic geometry).

    It is remarkable how widely scattered are the motivating questions in these areas, and how diverse are the backgrounds of the researchers pursuing them. Bringing together experts in this wide variety of fields to explore common interests and discover unexpected connections is the main goal of our program. Our program will be of interest to those working in many different elds, including low-dimensional dynamical systems (via the connection to billiards); differential geometry (Higgs bundles and related moduli spaces); and different types of theoretical physics (electron transport and supersymmetric quantum field theory).

    Updated on Apr 10, 2018 10:50 AM PDT
  26. Program Microlocal Analysis

    Organizers: Pierre Albin (University of Illinois at Urbana-Champaign), Nalini Anantharaman (Université de Strasbourg), Kiril Datchev (Purdue University), Raluca Felea (Rochester Institute of Technology), Colin Guillarmou (École Normale Supérieure), LEAD Andras Vasy (Stanford University)
    315 image1

    Microlocal analysis provides tools for the precise analysis of problems arising in areas such as partial differential equations or integral geometry by working in the phase space, i.e. the cotangent bundle, of the underlying manifold. It has origins in areas such as quantum mechanics and hyperbolic equations, in addition to the development of a general PDE theory, and has expanded tremendously over the last 40 years to the analysis of singular spaces, integral geometry, nonlinear equations, scattering theory… This program will bring together researchers from various parts of the field to facilitate the transfer of ideas, and will also provide a comprehensive introduction to the field for postdocs and graduate students.

    Updated on Apr 13, 2018 11:42 AM PDT
  27. Workshop Connections for Women: Holomorphic Differentials in Mathematics and Physics

    Organizers: Laura Fredrickson (Stanford University), Lotte Hollands (Heriot-Watt University, Riccarton Campus), LEAD Qiongling Li (California Institute of Technology; Aarhus University), Anna Wienhard (Ruprecht-Karls-Universität Heidelberg), Grace Work (University of Illinois at Urbana-Champaign)
    Quadmesh2
    Some holomorphic differentials on a genus 2 surface, with close up views of singular points, image courtesy Jian Jiang.

    This two-day workshop will consist of various talks given by prominent female mathematicians on topics of new developments in the role of holomorphic differentials on Riemann surfaces. These will be appropriate for graduate students, post-docs, and researchers in areas related to the program.  

    This workshop is open to all mathematicians.

    Updated on May 10, 2018 09:01 AM PDT
  28. Workshop Introductory Workshop: Holomorphic Differentials in Mathematics and Physics

    Organizers: LEAD Jayadev Athreya (University of Washington), Sergei Gukov (California Institute of Technology), Andrew Neitzke (University of Texas, Austin), Anna Wienhard (Ruprecht-Karls-Universität Heidelberg)
    Quadmesh2
    Some holomorphic differentials on a genus 2 surface, with close up views of singular points, image courtesy Jian Jiang.

    Holomorphic differentials on Riemann surfaces have long held a distinguished place in low dimensional geometry, dynamics and representation theory. Recently it has become apparent that they constitute a common feature of several other highly active areas of current research in mathematics and also at the interface with physics. In this introductory workshop, we will bring junior and senior researchers from this diverse range of subjects together in order to explore common themes and unexpected connections.

    Updated on Nov 21, 2017 04:24 PM PST
  29. Workshop Connections for Women: Microlocal Analysis

    Organizers: Tanya Christiansen (University of Missouri), LEAD Raluca Felea (Rochester Institute of Technology)
    315 image1

    This workshop will provide a gentle introduction to a selection of applications of microlocal analysis.  These may be drawn from among geometric microlocal analysis, inverse problems, scattering theory, hyperbolic dynamical systems,  quantum chaos and relativity.  The workshop will also provide  a panel discussion, a poster session and an introduction/research session. 

    This workshop is open to all mathematicians.

    Updated on Jan 11, 2018 12:35 PM PST
  30. Workshop Introductory Workshop: Microlocal Analysis

    Organizers: Pierre Albin (University of Illinois at Urbana-Champaign), LEAD Raluca Felea (Rochester Institute of Technology), Andras Vasy (Stanford University)
    315 image1

    Microlocal analysis provides tools for the precise analysis of problems arising in areas such as partial differential equations or integral geometry by working in the phase space, i.e. the cotangent bundle, of the underlying manifold. It has origins in areas such as quantum mechanics and hyperbolic equations, in addition to the development of a general PDE theory, and has expanded tremendously over the last 40 years to the analysis of singular spaces, integral geometry, nonlinear equations, scattering theory… This workshop will provide a comprehensive introduction to the field for postdocs and graduate students as well as specialists outside the field, building up from standard facts about the Fourier transform, distributions and basic functional analysis.

    Updated on Jan 11, 2018 01:28 PM PST
  31. Workshop Recent developments in microlocal analysis

    Organizers: LEAD Pierre Albin (University of Illinois at Urbana-Champaign), Colin Guillarmou (École Normale Supérieure), Andras Vasy (Stanford University)
    315 image1

    Microlocal analysis provides tools for the precise analysis of problems arising in areas such as partial differential equations or integral geometry by working in the phase space, i.e. the cotangent bundle, of the underlying manifold. It has origins in areas such as quantum mechanics and hyperbolic equations, in addition to the development of a general PDE theory, and has expanded tremendously over the last 40 years to the analysis of singular spaces, integral geometry, nonlinear equations, scattering theory, hyperbolic dynamical systems, probability… As this description shows microlocal analysis has become a very broad area. Due to its breadth, it is a challenge for researchers to be aware of what is happening in other parts of the field, and the impact this may have in their own research area. The purpose of this workshop is thus to bring together researchers from different parts of microlocal analysis and its applications to facilitate the transfer of new ideas. 

    Updated on May 08, 2018 03:21 PM PDT
  32. Workshop Holomorphic Differentials in Mathematics and Physics

    Organizers: LEAD Jayadev Athreya (University of Washington), Steven Bradlow (University of Illinois at Urbana-Champaign), Sergei Gukov (California Institute of Technology), Andrew Neitzke (University of Texas, Austin), Anton Zorich (Institut de Mathematiques de Jussieu)
    Sn image
    An example of a spectral network associated to the group SL(4).

    Holomorphic differentials on Riemann surfaces have long held a distinguished place in low dimensional geometry, dynamics and representation theory. Recently it has become apparent that they constitute a common feature of several other highly active areas of current research in mathematics and also at the interface with physics. In some cases the areas themselves (such as stability conditions on Fukaya-type categories, links to quantum integrable systems, or the physically derived construction of so-called spectral networks) are new, while in others the novelty lies more in the role of the holomorphic differentials (for example in the study of billiards in polygons, special - Hitchin or higher Teichmuller - components of representation varieties, asymptotic properties of Higgs bundle moduli spaces, or in new interactions with algebraic geometry).

    It is remarkable how widely scattered are the motivating questions in these areas, and how diverse are the backgrounds of the researchers pursuing them. Bringing together experts in this wide variety of fields to explore common interests and discover unexpected connections is the main goal of our program. Our workshop will be of interest to those working in many different fields, including low-dimensional dynamical systems (via the connection to billiards); differential geometry (Higgs bundles and related moduli spaces); and different types of theoretical physics (electron transport and supersymmetric quantum field theory).

    Updated on May 14, 2018 02:00 PM PDT
  33. Program Quantum Symmetries

    Organizers: Vaughan Jones (Vanderbilt University), LEAD Scott Morrison (Australian National University), Victor Ostrik (University of Oregon), Emily Peters (Loyola University), Eric Rowell (Texas A & M University), LEAD Noah Snyder (Indiana University), Chelsea Walton (University of Illinois at Urbana-Champaign)
    Program picture
    The study of tensor categories involves the interplay of representation theory, combinatorics, number theory, and low dimensional topology (from a string diagram calculation, describing the 3-dimensional bordism 2-category [arXiv:1411.0945]).

    Symmetry, as formalized by group theory, is ubiquitous across mathematics and science. Classical examples include point groups in crystallography, Noether's theorem relating differentiable symmetries and conserved quantities, and the classification of fundamental particles according to irreducible representations of the Poincaré group and the internal symmetry groups of the standard model. However, in some quantum settings, the notion of a group is no longer enough to capture all symmetries. Important motivating examples include Galois-like symmetries of von Neumann algebras, anyonic particles in condensed matter physics, and deformations of universal enveloping algebras. The language of tensor categories provides a unified framework to discuss these notions of quantum symmetry.

    Updated on Mar 22, 2018 11:21 AM PDT
  34. Program Higher Categories and Categorification

    Organizers: David Ayala (Montana State University), Clark Barwick (Massachusetts Institute of Technology), David Nadler (University of California, Berkeley), LEAD Emily Riehl (Johns Hopkins University), Marcy Robertson (University of Melbourne), Peter Teichner (Max-Planck-Institut für Mathematik), Dominic Verity (Macquarie University)
    Higher adjunction axiom
    swallowtail identity

    Though many of the ideas in higher category theory find their origins in homotopy theory — for instance as expressed by Grothendieck’s “homotopy hypothesis” — the subject today interacts with a broad spectrum of areas of mathematical research. Unforeseen descent, or local-to-global formulas, for familiar objects can be articulated in terms of higher invertible morphisms. Compatible associative deformations of a sequence of maps of spaces, or derived schemes, can putatively be represented by higher categories, as Koszul duality for E_n-algebras suggests. Higher categories offer unforeseen characterizing universal properties for familiar constructions such as K-theory. Manifold theory is natively connected to higher category theory and adjunction data, a connection that is most famously articulated by the recently proven Cobordism Hypothesis.
    In parallel, the idea of "categorification'' is playing an increasing role in algebraic geometry, representation theory, mathematical physics, and manifold theory, and higher categorical structures also appear in the very foundations of mathematics in the form of univalent foundations and homotopy type theory. A central mission of this semester will be to mitigate the exorbitantly high "cost of admission'' for mathematicians in other areas of research who aim to apply higher categorical technology and to create opportunities for potent collaborations between mathematicians from these different fields and experts from within higher category theory.

    Updated on Apr 10, 2018 11:13 AM PDT
  35. Workshop Connections for Women: Quantum Symmetries

    Organizers: Emily Peters (Loyola University), LEAD Chelsea Walton (University of Illinois at Urbana-Champaign)
    Cfw image
    Photo by drmakete lab on Unsplash

    This workshop will feature several talks by experts, along with numerous 5-minute presentations by junior mathematicians, on topics related to Quantum Symmetry. Such topics will include tensor categories, subfactors, Hopf algebras, topological quantum field theory and more. There will also be a panel discussion on professional development. The majority of the speakers and panelists for this event will be women and gender minorities, and members of these groups and of other underrepresented groups are especially encouraged to attend. This workshop is open to all mathematicians.

    Updated on Mar 26, 2018 12:18 PM PDT
  36. Workshop Introductory Workshop: Quantum Symmetries

    Organizers: Vaughan Jones (Vanderbilt University), Victor Ostrik (University of Oregon), Emily Peters (Loyola University), LEAD Noah Snyder (Indiana University)
    Jellyfish
    Jellyfish floating to the surface, as in the evaluation algorithm for certain planar algebras.

    This workshop will consist of introductory minicourses on key topics in Quantum Symmetry: fusion categories, modular tensor categories, Hopf algebras, subfactors and planar algebras, topological field theories, conformal nets, and topological phases of matter.  These minicourses will be introductory and are aimed at giving semester participants exposure to the main ideas of subfields other than their own.

    Updated on Apr 09, 2018 02:20 PM PDT
  37. Workshop Connections for Women: Higher Categories and Categorification

    Organizers: Emily Riehl (Johns Hopkins University), LEAD Marcy Robertson (University of Melbourne)
    Picture of graph%281%29
    Picture of a Feynman graph.

    This two-day workshop will survey notable developments in the foundations and applications of higher category theory. It will consist of two mini-courses given by emerging female leaders in the subject: Claudia Scheimbauer and Nathalie Wahl.  This will be paired with a problem sessions lead by selected "TA's", themselves experts in higher structures.  Each lecture series will be tailored to a diverse audience, accessible to graduate students and non-expert researchers with some background in homological algebra.  

    The majority of the speakers and panelists for this event will be women and gender minorities, and members of these groups and of other underrepresented groups are especially encouraged to attend. This workshop is open to all mathematicians.

    Updated on Jun 20, 2018 01:46 PM PDT
  38. Workshop Introductory Workshop: Higher Categories and Categorification

    Organizers: LEAD David Ayala (Montana State University), Emily Riehl (Johns Hopkins University), Christopher Schommer-Pries (Max-Planck-Institut für Mathematik), Peter Teichner (Max-Planck-Institut für Mathematik)
    Image
    relations among 2-morphisms in the 2-dimensional unoriented bordism bicategory

    This workshop will survey notable developments and applications of higher category theory; it will be a venue for end-users to share their vision of how to apply the theory, as well as developers to share technical advancements.  It will consist of 6 series of 3 lectures, each given by instrumental end-users & developers of higher category theory, together with a few question-answer sessions.  Each lecture series will be tailored to a diverse audience, accessible to graduate students and non-expert researchers with some background in homological also algebra.  The content of these lecture series will concern the following topics.

    • K-theory: categorification, non-commutative motives, trace methods; 
    • TQFT: functorial field theories, factorization homology.
    • Parametrized higher category theory: stratifications, equivariant homotopy theory, operads, deformation theory and Koszul duality. 
    • Synthetic higher category theory: model-independent characterizations, cosmoi.   

    Updated on Jun 25, 2018 11:39 AM PDT
  39. Workshop Tensor categories and topological quantum field theories

    Organizers: Scott Morrison (Australian National University), Eric Rowell (Texas A & M University), LEAD Claudia Scheimbauer (University of Oxford), Christopher Schommer-Pries (Max-Planck-Institut für Mathematik)
    Image
    Topological field theory studies the interplay of algebraic and topological structure (image credit Kevin Walker)

    The workshop will concern the latest developments in the mathematical study of quantum field theories. The focus will be on the interplay among topics such as higher category theory, as illustrated by the cobordism hypothesis, conformal field theory, tensor categories describing the quantum symmetries, and the relation to topological phases of matter.

    Updated on Jul 03, 2018 04:02 PM PDT
  40. Workshop (∞, n)-categories,factorization homology, and algebraic K-theory

    Organizers: LEAD Clark Barwick (Massachusetts Institute of Technology), David Gepner (Purdue University), David Nadler (University of California, Berkeley), Marcy Robertson (University of Melbourne)
    Image

    This workshop will focus on recent developments in factorization homology, parametrized homotopy theory, and algebraic K-theory.  These seemingly disparate topics are unified by a common methodology, which leverages universal properties and unforeseen descent by way of higher category theory. Furthermore, they enjoy powerful and complementary roles in application to the cyclotomic trace.  This workshop will be a venue for experts in these areas to present new results, make substantive connections across fields, and suggest and contextualize outstanding questions and problems.  It will consist of 9 speakers, each delivering a 1-hour morning talk and a 1-hour afternoon talk, in addition to a session reserved for drawing attention to an assortment of outstanding problems.

    Updated on Jun 25, 2018 10:56 AM PDT
  41. Program Random and Arithmetic Structures in Topology

    Organizers: Nicolas Bergeron (Université de Paris VI (Pierre et Marie Curie)), Jeffrey Brock (Brown University), Alex Furman (University of Illinois at Chicago), Tsachik Gelander (Weizmann Institute of Science), Ursula Hamenstädt (Rheinische Friedrich-Wilhelms-Universität Bonn), Fanny Kassel (Institut des Hautes Études Scientifiques (IHES)), LEAD Alan Reid (Rice University)
    Msri image

    The use of dynamical invariants has long been a staple of geometry and topology, from rigidity theorems, to classification theorems, to the general study of lattices and of the mapping class group. More recently, random structures in topology and notions of probabilistic geometric convergence have played a critical role in testing the robustness of conjectures in the arithmetic setting. The program will focus on invariants in topology, geometry, and the dynamics of group actions linked to random constructions.

    Updated on Nov 16, 2017 02:50 PM PST
  42. Program Decidability, definability and computability in number theory

    Organizers: Valentina Harizanov (George Washington University), Moshe Jarden (Tel-Aviv University), Maryanthe Malliaris (University of Chicago), Barry Mazur (Harvard University), Russell Miller (Queens College, CUNY), Jonathan Pila (University of Oxford), LEAD Thomas Scanlon (University of California, Berkeley), Alexandra Shlapentokh (East Carolina University), Carlos Videla (Mount Royal University)

    This program is focused on the two-way interaction of logical ideas and techniques, such as definability from model theory and decidability from computability theory, with fundamental problems in number theory. These include analogues of Hilbert's tenth problem, isolating properties of fields of algebraic numbers which relate to undecidability, decision problems around linear recurrence and algebraic differential equations, the relation of transcendence results and conjectures to decidability and decision problems, and some problems in anabelian geometry and field arithmetic. We are interested in this specific interface across a range of problems and so intend to build a semester which is both more topically focused and more mathematically broad than a typical MSRI program.

    Updated on May 09, 2018 10:50 AM PDT
  43. Workshop Connections for Women: Random and Arithmetic Structures in Topology

    Organizers: LEAD Ursula Hamenstädt (Rheinische Friedrich-Wilhelms-Universität Bonn), LEAD Fanny Kassel (Institut des Hautes Études Scientifiques (IHES))
    Msri image

    This two-day workshop will consist of various talks given by prominent female mathematicians in the field.  These will be appropriate for graduate students, post-docs, and researchers in areas related to the program.  The workshop will also include a professional development session.

    This workshop is open to all mathematicians.

    Updated on Jun 12, 2018 09:17 AM PDT
  44. Program Mathematical problems in fluid dynamics

    Organizers: Thomas Alazard (École Normale Supérieure; Centre National de la Recherche Scientifique (CNRS)), Hajer Bahouri (Université Paris-Est Créteil Val-de-Marne; Centre National de la Recherche Scientifique (CNRS)), Mihaela Ifrim (University of Wisconsin-Madison), Igor Kukavica (University of Southern California), David Lannes (Université de Bordeaux I; Centre National de la Recherche Scientifique (CNRS)), LEAD Daniel Tataru (University of California, Berkeley)
    Barcuta

    Fluid dynamics is one of the classical areas of partial differential equations, and has been the subject of extensive research over hundreds of years. It is perhaps one of the most challenging and exciting fields of scientific pursuit simply because of the complexity of the subject and the endless breadth of applications.

    The focus of the program is on incompressible fluids, where water is a primary example. The fundamental equations in this area are the well-known Euler equations for inviscid fluids, and the Navier-Stokes equations for the viscous fluids. Relating the two is the problem of the zero viscosity limit, and its connection to the phenomena of turbulence. Water waves, or more generally interface problems in fluids, represent another target area for the program. Both theoretical and numerical aspects will be considered.

    Updated on Jan 24, 2018 10:14 AM PST