Mathematical Sciences Research Institute

Home > Scientific > Current

Current Scientific Events

  1. Program Complementary Program 2020-21

    The Complementary Program has a limited number of memberships that are open to mathematicians whose interests are not closely related to the core programs; special consideration is given to mathematicians who are partners of an invited member of a core program.

    Updated on Jul 14, 2021 09:02 AM PDT
  2. Summer Graduate School Séminaire de Mathématiques Supérieures 2021: Microlocal Analysis: Theory and Applications (Virtual School)

    Organizers: Suresh Eswarathasan (Dalhousie University), Dmitry Jakobson (McGill University), Katya Krupchyk (University of California, Irvine), Stephane Nonnenmacher (Université de Paris XI)

    Microlocal analysis originated in the study of linear partial differential equations (PDEs) in the high-frequency regime, through a combination of ideas from Fourier analysis and classical Hamiltonian mechanics. In parallel, similar ideas and methods had been developed since the early times of quantum mechanics, the smallness of Planck’s constant allowing to use semiclassical methods. The junction between these two points of view (microlocal and semiclassical) only emerged in 1970s, and has taken its full place in the PDE community in the last 20 years. This methodology resulted in major advances in the understanding of linear and nonlinear PDEs in the last 50 years. Moreover, microlocal methods continue to find new applications in diverse areas of mathematical analysis, such as the spectral theory of nonselfadjoint operators, scattering theory, and inverse problems.

    Updated on Apr 13, 2021 03:49 PM PDT
  3. Summer Research in Mathematics 2021 Summer Research in Mathematics

    Due to the pandemic, the 2019 Summer Research in Mathematics program was postponed to 2020.  Therefore, MSRI is not accepting new applications at this time.

    MSRI's Summer Research in Mathematics program provides space, funding, and the opportunity for in-person collaboration to small groups of mathematicians, especially women and gender-expansive individuals, whose ongoing research may have been disproportionately affected by various obstacles including family obligations, professional isolation, or access to funding. Through this effort, MSRI aims to mitigate the obstacles faced by these groups, improve the odds of research project completion, and deepen their research experience.

    The ultimate goal of this program is to enhance the mathematical sciences as a whole by positively affecting the research and careers of all of its participants and assisting their efforts to maintain involvement in the research community.

    Updated on Aug 31, 2020 11:43 AM PDT
  4. Summer Graduate School Random Conformal Geometry (Virtual School)

    Organizers: Mario Bonk (University of California, Los Angeles), Steffen Rohde (University of Washington), LEAD Fredrik Viklund (Royal Institute of Technology)
    a random quasiconformal map obtained from Beltrami equation by randomly assigning the values of +-1/2 for the Beltrami coefficient on small squares subdividing the unit square

    This Summer Graduate School will cover basic tools that are instrumental in Random Conformal Geometry (the investigation of analytic and geometric objects that arise from natural probabilistic constructions, often motivated by models in mathematical physics) and are at the foundation of the subsequent semester-long program  "The Analysis and Geometry of Random Spaces".  Specific topics are Conformal Field Theory, Brownian Loops and related processes, Quasiconformal Maps, as well as Loewner Energy and Teichmüller Theory.

    Updated on Mar 19, 2021 03:03 PM PDT
  5. Summer Graduate School Foundations and Frontiers of Probabilistic Proofs (Virtual School)

    Organizers: Alessandro Chiesa (University of California, Berkeley), Tom Gur (University of Warwick)
    Proofs main logo
    Several executions of a 3-dimensional sumcheck protocol with a random order of directions (thanks to Dev Ojha for creating the diagram)

    Proofs are at the foundations of mathematics. Viewed through the lens of theoretical computer science, verifying the correctness of a mathematical proof is a fundamental computational task. Indeed, the P versus NP problem, which deals precisely with the complexity of proof verification, is one of the most important open problems in all of mathematics.

    The complexity-theoretic study of proof verification has led to exciting reenvisionings of mathematical proofs. For example, probabilistically checkable proofs (PCPs) admit local-to-global structure that allows verifying a proof by reading only a minuscule portion of it. As another example, interactive proofs allow for verification via a conversation between a prover and a verifier, instead of the traditional static sequence of logical statements. The study of such proof systems has drawn upon deep mathematical tools to derive numerous applications to the theory of computation and beyond.

    In recent years, such probabilistic proofs received much attention due to a new motivation, delegation of computation, which is the emphasis of this summer school. This paradigm admits ultra-fast protocols that allow one party to check the correctness of the computation performed by another, untrusted, party. These protocols have even been realized within recently-deployed technology, for example, as part of cryptographic constructions known as succinct non-interactive arguments of knowledge (SNARKs).

    This summer school will provide an introduction to the field of probabilistic proofs and the beautiful mathematics behind it, as well as prepare students for conducting cutting-edge research in this area.

    Updated on Apr 19, 2021 06:23 PM PDT