Logo

Mathematical Sciences Research Institute

Home > Education > Current

Current Educational Events

  1. MSRI-UP MSRI-UP 2020: Branched Covers of Curves

    Organizers: Federico Ardila (San Francisco State University), LEAD Duane Cooper (Morehouse College), Maria Franco (Queensborough Community College (CUNY); MSRI - Mathematical Sciences Research Institute), Rebecca Garcia (Sam Houston State University), Edray Goins (Pomona College), Suzanne Weekes (Worcester Polytechnic Institute)

    The MSRI-UP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.

    In 2020, MSRI-Up will focus on Branched Covers of Curves. The research program will be led by Dr. Edray Goins, Professor of Mathematics at Pomona College.

    Updated on Jun 15, 2020 08:45 AM PDT
  2. Summer Graduate School Séminaire de Mathématiques Supérieures 2020: Discrete Probability, Physics and Algorithms (Montréal, Canada) [Virtual Summer Graduate School]

    Organizers: Gerard Ben Arous (New York University, Courant Institute), LEAD Alexander Fribergh (University of Montreal), Lea Popovic (Concordia University)
    Image

    Due to the COVID-19 pandemic, this summer school will be held online.

    Probability theory, statistics as well as mathematical physics have increasingly been used in computer science. The goal of this school is to provide a unique opportunity for graduate students and young researchers to developed multi-disciplinary skills in a rapidly evolving area of mathematics.

    The topics would include spin glasses, constraint satisfiability, randomized algorithms, Monte-Carlo Markov chains and high-dimensional statistics, sparse and random graphs, computational complexity, estimation and approximation algorithms. Those topics will fall into two main categories, on the one hand problems related to spin glasses and on the other hand random algorithms.

    The part of the summer school dedicated to spin glasses will be split into three parts: an introductory course about traditional spin glasses followed by two more advanced courses where spin glasses meet computer science in addition to a talk on dynamics of spin glasses. The part of the summer school on random algorithms will consist of an introductory course on phase transitions in large random structures, followed by advanced courses on theoretical bounds for computational complexity in reconstruction and inference, and on understanding rare events in random graphs and models of statistical mechanics.

    The two introductory courses on spin glasses and on random algorithms will be accompanied by three exercises sessions of one hour. A one hour exercises session will follow each of the three sessions of a course for both the introductory course on spin glasses and the introductory course on random algorithms. Exercises sessions will be led by an assistant, but will primarily focus on participation of the students.

    Updated on May 26, 2020 12:21 PM PDT