
Workshop Modern Math Workshop 2022
Organizers: Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), Philip Hammer (Institute for Mathematical and Statistical Innovation), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))ALL FUNDING FOR THIS WORKSHOP HAS BEEN ALLOCATED
As part of the Mathematical Sciences Collaborative Diversity Initiatives, the six NSFfunded U.S. mathematics institutes will host their annual SACNAS preconference event, the 2022 Modern Math Workshop (MMW). The Modern Math Workshop encourages undergraduates from underrepresented groups to pursue careers in the mathematical sciences, and builds research and networking opportunities among undergraduates, graduate students and recent PhDs.
Updated on Nov 29, 2022 08:49 AM PST 
Summer Graduate School Sums of Squares Method in Geometry, Combinatorics and Optimization (BIRS)
Organizers: LEAD Grigoriy Blekherman (Georgia Institute of Technology), Annie Raymond (University of Massachusetts Amherst), Cynthia Vinzant (University of Washington)The study of nonnegative polynomials and sums of squares is a classical area of real algebraic geometry dating back to Hilbert’s 17th problem. It also has rich connections to real analysis via duality and moment problems. In the last 15 years, sums of squares relaxations have found a wide array of applications from very applied areas (e.g., robotics, computer vision, and machine learning) to theoretical applications (e.g., extremal combinatorics, theoretical computer science). Also, an intimate connection between sums of squares and classical algebraic geometry has been found. Work in this area requires a blend of ideas and techniques from algebraic geometry, convex geometry and representation theory. After an introduction to nonnegative polynomials, sums of squares and semidefinite optimization, we will focus on the following three topics:
 Sums of squares on real varieties (sets defined by real polynomial equations) and connections with classical algebraic geometry.
 Sums of squares method for proving graph density inequalities in extremal combinatorics. Here addition and multiplication take place in the gluing algebra of partially labelled graphs.
 Sums of squares relaxations for convex hulls of real varieties and thetabodies with applications in optimization.
The summer school will give a selfcontained introduction aimed at beginning graduate students, and introduce participants to the latest developments. In addition to attending the lectures, students will meet in intensive problem and discussion sessions that will explore and extend the topics developed in the lectures.
Updated on Apr 07, 2022 02:41 PM PDT 
Summer Graduate School Tropical Geometry
Organizers: Renzo Cavalieri (Colorado State University), Hannah Markwig (EberhardKarlsUniversität Tübingen), Dhruv Ranganathan (University of Cambridge)Enumerative geometry and the theory of moduli spaces of curves are two cornerstones of modern algebraic geometry; the two subjects have had a significant influence on each other. In the last 15 years, discrete and combinatorial methods, systematized within tropical geometry, have begun to provide new avenues of access into these two subjects. The goal of this summer school is to give students crash courses in tropical and logarithmic geometry, with a particular focus on the applications in enumerative geometry and moduli theory. The school will consist of three courses of seven lectures each:
 Enumeration of tropical curves/ by Hannah Markwig
 Curve counting in tropical and algebraic geometry by Renzo Cavalieri
 Logarithmic geometry and stable map/s by Dhruv Ranganathan
Updated on Aug 12, 2022 03:03 PM PDT 
Summer Graduate School Mathematics of Machine Learning (INdAM and Courant Institute)
Organizers: Sebastien Bubeck (Microsoft Research)This school is offered in partnership with Istituto Nazionale di Alta Matematica (INdAM) and the Courant Institute of Mathematical Sciences.
Learning theory is a rich field at the intersection of statistics, probability, computer science, and optimization. Over the last decades the statistical learning approach has been successfully applied to many problems of great interest, such as bioinformatics, computer vision, speech processing, robotics, and information retrieval. These impressive successes relied crucially on the mathematical foundation of statistical learning.
Recently, deep neural networks have demonstrated stunning empirical results across many applications like vision, natural language processing, and reinforcement learning. The field is now booming with new mathematical problems, and in particular, the challenge of providing theoretical foundations for deep learning techniques is still largely open. On the other hand, learning theory already has a rich history, with many beautiful connections to various areas of mathematics (e.g., probability theory, high dimensional geometry, game theory). The purpose of the summer school is to introduce graduate students (and advanced undergraduates) to these foundational results, as well as to expose them to the new and exciting modern challenges that arise in deep learning and reinforcement learning.
Updated on Aug 12, 2022 11:42 AM PDT 
Summer Graduate School Topological Methods for the Discrete Mathematician
Organizers: Pavle Blagojevic (Freie Universität Berlin), Florian Frick (Carnegie Mellon University), Shira Zerbib (Iowa State University)Recently, progress in the field of topological methods in discrete mathematics has been rapid and has generated a lot of activity with the resolution of major open problems, the emergence of new lines of inquiry, and the development of new tools. These exciting new developments have not been digested into a textbook treatment. The two main goals of this school are to:
 Provide graduate students with a thorough introduction to novel topological techniques and to a handful of their applications in the fields of combinatorics and discrete geometry with short glimpses into mathematical mechanics and algorithm complexity.
 Expose students to current research, and guide them in research on open problems in discrete mathematics using modern topological tools.
The summer school will lead participants from appealing, simpletostate problems at confluence of combinatorics, geometry, and topology to sophisticated topological methods that are required for their resolution. In recent years topological methods have found numerous novel applications in mathematics and beyond, such as in data science, machine learning, economics, the social sciences, and biology. The problems we will discuss are particularly wellsuited to rapidly put students in a position to approach related research questions.
Updated on Aug 12, 2022 11:34 AM PDT 
Summer Graduate School MSRINCTS Joint Summer School: Recent Topics in Well Posedness
Organizers: Jungkai Chen (National Taiwan University), Mimi Dai (University of Illinois at Chicago), Yoshikazu Giga (University of Tokyo), Tsuyoshi Yoneda (Hitotsubashi University)This school is offered in partnership with the National Center for Theoretical Sciences.
The purpose of the workshop is to introduce graduate students to fundamental results on the NavierStokes and the Euler equations, with special emphasis on the solvability of its initial value problem with rough initial data as well as the large time behavior of a solution. These topics have long research history. However, recent studies clarify the problems from a broad point of view, not only from analysis but also from detailed studies of orbit of the flow.
Updated on Aug 12, 2022 11:40 AM PDT 
Summer Graduate School 2022 Joint PCMI School: Number Theory Informed by Computation
Organizers: Jennifer Balakrishnan (Boston University), Rafe Mazzeo (Stanford University), Bjorn Poonen (Massachusetts Institute of Technology), Akshay Venkatesh (Institute for Advanced Study)The PCMI graduate summer school program in 2022 will consist of a sequence of 11 minicourses. The lecturers and topics for these minicourses are listed below. Each minicourse is accompanied by a problem session. The topics are arranged so that there is good material and opportunities for learning both for less experienced students as well as more advanced students. Beyond their attendance in these minicourse sessions, all graduate participants will be able to take part in the substantial other benefits of a PCMI session. This includes the opportunity to interact with the researchers in residence and take part in the research seminar component of PCMI. Many graduate students also interact in significant ways with the undergraduate cohort,,the undergraduate faculty cohort, and may also participate in the many pedagogically focused activities which form part of the K12 Teacher Leadership Program and the Workshop for Equity in Mathematics Education. PCMI includes numerous crossprogram activities to help members from all these groups interact with one another.
Updated on Feb 02, 2022 03:52 PM PST 
Summer Graduate School Metric Geometry and Geometric Analysis (Oxford, United Kingdom)
Organizers: LEAD Cornelia Drutu (University of Oxford), Panos Papazoglou (University of Oxford)The purpose of the summer school is to introduce graduate students to key mainstream directions in the recent development of geometry, which sprang from Riemannian Geometry in an attempt to use its methods in various contexts of nonsmooth geometry. This concerns recent developments in metric generalizations of the theory of nonpositively curved spaces and discretizations of methods in geometry, geometric measure theory and global analysis. The metric geometry perspective gave rise to new results and problems in Riemannian Geometry as well.
All these themes are intertwined and have developed either together or greatly influencing one another. The summer school will introduce some of the latest developments and the remaining open problems in these very modern areas, and will emphasize their synergy.
Updated on Feb 14, 2022 12:29 PM PST 
Summer Graduate School Séminaire de Mathématiques Supérieures 2022: Floer Homotopy Theory
Organizers: Kristen Hendricks (Rutgers University), Ailsa Keating (University of Cambridge), Robert Lipshitz (University of Oregon), Liam Watson (University of British Columbia), Ben Williams (University of British Columbia)The idea of stable homotopy refinements of Floer homology was first introduced by Cohen, Jones, and Segal in a 1994 paper, but it was only in the last decade that this idea became a key tool in lowdimensional and symplectic topology. The two crowning achievements of these techniques so far are Manolescu's use of his Pin(2)equivariant SeibergWitten Floer homotopy type to resolve the Triangulation Conjecture and AbouzaidBlumberg's use of Floer homotopy theory and Morava Ktheory to prove the general Arnol'd Conjecture in finite characteristic. During this period, a range of related techniques, included under the umbrella of Floer homotopy theory, have also led to important advances, including involutive Heegaard Floer homology, Smith theory for Lagrangian intersections, homotopy coherence, and further connections between string topology and Floer theory. These in turn have sparked developments in algebraic topology, ranging from developments on Lie algebras in derived algebraic geometry to new computations of equivariant Mahowald invariants to new results on topological Hochschild homology.
The goal of the summer school is to provide participants the tools in symplectic geometry and stable homotopy theory required to work on Floer homotopy theory. Students will come away with a basic understanding of some of the key techniques, questions, and challenges in both of these fields. The summer school may be particularly valuable for participants with a solid understanding of one of the two fields who want to learn more about the other and the connections between them.Updated on May 27, 2022 09:41 AM PDT 
Summer Graduate School Random Graphs
Organizers: Louigi AddarioBerry (McGill University), Remco van der Hofstad (Technische Universiteit Eindhoven)The topic of random graphs is at the forefront of applied probability, and it is one of the central topics in multidisciplinary science where mathematical ideas are used to model and understand the real world. At the same time, random graphs pose challenging mathematical problems that have attracted the attention from probabilists and combinatorialists since the 1960, with the pioneering work of Erdös and Rényi. Around the turn of the millennium, very large data sets started to become available, and several applied disciplines started to realize that many realworld networks, even though they are from various different origins, share many fascinating features. In particular, many of such networks are small worlds, meaning that graph distances in them are typically quite small, and they are scalefree, in the sense that there are enormous differences in the number of connections that their elements make. In particular, such networks are quite different from the classical random graph models, such as proposed by Erdös and Rényi.
Updated on Jul 14, 2022 09:37 AM PDT 
Summer Graduate School Algebraic Theory of Differential and Difference Equations, Model Theory and their Applications
Organizers: LEAD Alexey Ovchinnikov (Queens College, CUNY), Anand Pillay (University of Notre Dame), Thomas Scanlon (University of California, Berkeley)The purpose of the summer school will be to introduce graduate students to effective methods in algebraic theories of differential and difference equations with emphasis on their modeltheoretic foundations and to demonstrate recent applications of these techniques to studying dynamic models arising in sciences. While these topics comprise a coherent and rich subject, they appear in graduate coursework in at best a piecemeal way, and then only as components of classes for other aims. With this Summer Graduate School, students will learn both the theoretical basis of differential and difference algebra and how to use these methods to solve practical problems. Beyond the lectures, the graduate students will meet daily in problem sessions and will participate in oneonone mentoring sessions with the lecturers and organizers.
Updated on Jan 11, 2023 02:38 PM PST 
Seminar ADJOINT Professional Development Panel  Work, Wellness & Autonomy
Updated on Jun 22, 2022 01:56 PM PDT 
Summer Graduate School New Directions in Representation Theory (AMSI and U. of Hawaii, Hilo)
Organizers: Angela Coughlin (Australian Mathematical Sciences Institute), Joseph Grotowski (University of Queensland), Tim Marchant (Australian Mathematical Sciences Institute), Ole Warnaar (University of Queensland), Geordie Williamson (University of Sydney)This school is offered in partnership with the Australian Mathematical Sciences Institute and the University of Hawaii, Hilo.
Representation Theory has undergone a revolution in recent years, with the development of what is now known as higher representation theory. In particular, the notion of categorification has led to the resolution of many problems previously considered to be intractable.
The school will begin by providing students with a brief but thorough introduction to what could be termed the “bread and butter of modern representation theory”, i.e., compact Lie groups and their representation theory; character theory; structure theory of algebraic groups.
We will then continue on to a number of more specialized topics. The final mix will depend on discussions with the prospective lecturers, but we envisage such topics as:
• modular representation theory of finite groups (blocks, defect groups, Broué’s conjecture);
• perverse sheaves and the geometric Satake correspondence;
• the representation theory of real Lie groups.
Updated on Aug 12, 2022 11:38 AM PDT 
Summer Graduate School Geometric Flows (Crete, Greece)
Organizers: Nicholas Alikakos (National and Kapodistrian University of Athens (University of Athens)), Panagiota Daskalopoulos (Columbia University)[The image on this vase from Minoan Crete, dated on 15002000 BC, resembles an ancient solution to the Curve shortening flow  one of the most basic geometric flows. The vase is at Heraklion Archaeological Museum]
This summer graduate school is a collaboration between MSRI and the FORTHIACM Institute in Crete. The purpose of the school is to introduce graduate students to some of the most important geometric evolution equations. Information about the location of the summer school can be found here.
This is an area of geometric analysis that lies at the interface of differential geometry and partial differential equations. The lectures will begin with an introduction to nonlinear diffusion equations and continue with classical results on the Ricci Flow, the Mean curvature flow and other fully nonlinear extrinsic flows such as the Gauss curvature flow. The lectures will also include geometric applications such as isoperimetric inequalities, topological applications such as the Poincaré onjecture, as well as recent important developments related to the study of singularities and ancient solutions.
Updated on Sep 30, 2022 12:18 PM PDT 
MSRIUP MSRIUP 2022: Algebraic Methods in Mathematical Biology
Organizers: LEAD Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Mercedes Franco (Queensborough Community College (CUNY)), Rebecca Garcia (Sam Houston State University), Candice Price (Smith College), Anne Shiu (Texas A & M University; Texas A&M University)The MSRIUP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.
In 2022, MSRIUP will focus on Algebraic Methods in Mathematical Biology. The research program will be led by Dr. Anne Shiu, Associate Professor of Mathematics at Texas A&M University.
Updated on May 31, 2022 02:30 PM PDT 
Summer Graduate School Integral Equations and Applications
Organizers: Fioralba Cakoni (Rutgers University), Dorina Mitrea (Baylor University), Irina Mitrea (Temple University), Shari Moskow (Drexel University)The field of Integral Equations has a long and distinguished history, being the driving force behind many fundamental developments in various areas of mathematics including Harmonic Analysis, Partial Differential Equations, Potential Theory, Scattering Theory, Functional Analysis, Complex Analysis, Operator Theory, Mathematical Physics and Numerical Analysis.
This school will:
 introduce graduate students to the systematic study of integral equations;
 present some of the latest theoretical advancements in the field and open problems; and
 involve participants in a handson discovery lab focused on deriving results about integral operators in two dimensions relevant for both the theoretical and numerical treatment of Integral Equations in two dimensions. The curriculum of this program will be accessible and will have a broad appeal to graduate students from a variety of mathematical areas (both theoretical and applied).
Updated on Aug 11, 2022 09:23 AM PDT 
Workshop May 12, a Celebration for Women in Mathematics, year 2022
Organizers: Ini Adinya (University of Ibadan), MariaGrazia ASCENZI (University of California Los Angeles), Hajer Bahouri (Laboratoire JacquesLouis Lions; Centre National de la Recherche Scientifique (CNRS)), Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), Lenore Blum (Carnegie Mellon University), Donatella Danielli (Arizona State University), Shanna Dobson (University of California, Riverside), Malena Espanol (Arizona State University), Vasiliki Evdoridou (The Open University), Olubunmi FadipeJoseph (University of Ilorin), Anna Fino (Università di Torino), Adi Glucksam (Northwestern University), Eriko Hironaka (Florida State University), M.E. Hogan (Texas Tech University), Kyounghee Kim (Florida State University), KueiNuan Lin (Pennsylvania State University), Liangbing Luo (University of Connecticut), LEAD Ornella Mattei (San Francisco State University), Betul OrcanEkmekci (Rice University), Leticia Pardo Simon (University of Manchester), Julia Plavnik (Indiana University), Palina Salanevich (Universiteit Utrecht), Awais Shaukat (Government College University Lahore), Tara Taylor (St. Francis Xavier University)MSRI's 2022 Celebration of Women in Math event will be for graduate students, with a focus on "How to build a Career in Math". It will be a hybrid workshop, with online and inperson activities at satellite institutions.
The event will include a panel discussion, social activities, and breakout sessions on the following topics:
 Finding (having) mentors
 How to build a network and collaborations
 How to become an independent researcher
 How to balance teaching/research/admin/life
Registration is open.
Updated on May 26, 2022 02:41 PM PDT 
Workshop [Hybrid Workshop] Critical Issues in Mathematics Education 2022: Initiating, Sustaining, and Researching Mathematics Department Transformation of Introductory Courses for STEM Majors
Organizers: Naneh Apkarian (Arizona State University), David Bressoud (Macalester College), Pamela Burdman (Just Equations), Jamylle Carter (Diablo Valley college), Ted Coe (Northwest Evaluation Association), Courtney Ginsberg (Math for America), Estrella Johnson (Virginia Polytechnic Institute and State University), W Gary Martin (Auburn University), Michael O'Sullivan (San Diego State University), LEAD Chris Rasmussen (San Diego State University), Daniel Reinholz (San Diego State University), Wendy Smith (University of Nebraska), David Webb (University of Colorado at Boulder)The world is changing, along with perceptions. Many call for the improvement of mathematics teaching and learning, for both citizenry and STEM preparation. To achieve sustainable change, though, the focus needs to extend from individuals to systems. It is not enough to change one classroom or one course. Transformation requires change at all levels: in teaching, programmatic practices, and institutions. This workshop will bring together teachers and researchers from universities, community colleges, and K12 schools to explore the reasons for and processes by which change in university mathematics departments is initiated, promoted, and sustained and lessons learned from change efforts in K12. It will review what we know about change at all levels and reflect on stories of failure and success.
Updated on Mar 14, 2022 12:02 PM PDT 
Workshop Blackwell Tapia Conference 2021
Organizers: David Banks (Duke University), Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), Lloyd Douglas, Robert Megginson (University of Michigan), Mariel Vazquez (University of California, Davis), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))MSRI and the Mathematical Science Institutes Diversity Initiative (MSIDI) are pleased to announce that the 2021 BlackwellTapia Conference (rescheduled from Fall 2020), will be held simultaneously at four locations nationwide. The conference will celebrate the 2020 BlackwellTapia prize winner, Tatiana Toro (University of Washington), who has recently been announced as the next Director of MSRI, effective August 2022.
ONLY REGISTRATIONS FOR VIRTUAL PARTICIPATION ARE BEING ACCEPTED AS OF NOVEMBER 8.
Choose from four host sites nationwide:
Mathematical Sciences Research Institute (MSRI): Berkeley, California
Institute for Pure and Applied Mathematics (IPAM): Los Angeles, California
Institute for Mathematical and Statistical Innovation (IMSI): Chicago, Illinois
Institute for Advanced Study (IAS): Princeton, New JerseyUpdated on Nov 08, 2021 10:30 AM PST 
Summer Graduate School Foundations and Frontiers of Probabilistic Proofs (Virtual School)
Organizers: Alessandro Chiesa (École Polytechnique Fédérale de Lausanne (EPFL)), Tom Gur (University of Warwick)Proofs are at the foundations of mathematics. Viewed through the lens of theoretical computer science, verifying the correctness of a mathematical proof is a fundamental computational task. Indeed, the P versus NP problem, which deals precisely with the complexity of proof verification, is one of the most important open problems in all of mathematics.
The complexitytheoretic study of proof verification has led to exciting reenvisionings of mathematical proofs. For example, probabilistically checkable proofs (PCPs) admit localtoglobal structure that allows verifying a proof by reading only a minuscule portion of it. As another example, interactive proofs allow for verification via a conversation between a prover and a verifier, instead of the traditional static sequence of logical statements. The study of such proof systems has drawn upon deep mathematical tools to derive numerous applications to the theory of computation and beyond.
In recent years, such probabilistic proofs received much attention due to a new motivation, delegation of computation, which is the emphasis of this summer school. This paradigm admits ultrafast protocols that allow one party to check the correctness of the computation performed by another, untrusted, party. These protocols have even been realized within recentlydeployed technology, for example, as part of cryptographic constructions known as succinct noninteractive arguments of knowledge (SNARKs).
This summer school will provide an introduction to the field of probabilistic proofs and the beautiful mathematics behind it, as well as prepare students for conducting cuttingedge research in this area.
Updated on Aug 11, 2021 12:27 PM PDT 
Summer Graduate School Random Conformal Geometry (Virtual School)
Organizers: Mario Bonk (University of California, Los Angeles), Steffen Rohde (University of Washington), LEAD Fredrik Viklund (Royal Institute of Technology)This Summer Graduate School will cover basic tools that are instrumental in Random Conformal Geometry (the investigation of analytic and geometric objects that arise from natural probabilistic constructions, often motivated by models in mathematical physics) and are at the foundation of the subsequent semesterlong program "The Analysis and Geometry of Random Spaces". Specific topics are Conformal Field Theory, Brownian Loops and related processes, Quasiconformal Maps, as well as Loewner Energy and Teichmüller Theory.
Updated on Mar 19, 2021 03:03 PM PDT 
Summer Graduate School Gauge Theory in Geometry and Topology (Virtual School)
Organizers: Lynn Heller (Universität Hannover), Francesco Lin (Columbia University), LEAD Laura Starkston (University of California, Davis), Boyu Zhang (University of Maryland)Figure 1. A rotationally symmetric solution to the selfduality equations on an open and dense subset of the torus. Singularities appear where the surface intersects the ideal boundary at infinity of the hyperbolic 3space visualized by the wireframe.
Gauge theory is a geometric language used to formulate many fundamental physical phenomena, which has also had profound impact on our understanding of topology. The main idea is to study the space of solutions to partial differential equations admitting a very large group of local symmetries. Starting in the late 1970s, mathematicians began to unravel surprising connections between gauge theory and many aspects of geometric analysis, algebraic geometry and lowdimensional topology. This influence of gauge theory in geometry and topology is pervasive nowadays, and new developments continue to emerge.
The goal of the summer school is to introduce students to the foundational aspects of gauge theory, and explore their relations to geometric analysis and lowdimensional topology. By the end of the twoweek program, the students will understand the relevant analytic and geometric aspects of several partial differential equations of current interest (including the YangMills ASD equations, the SeibergWitten equations, and the Hitchin equations) and some of their most impactful applications to problems in geometry and topology.
Updated on Jun 28, 2021 12:06 PM PDT 
Summer Graduate School Mathematics of Big Data: Sketching and (Multi) Linear Algebra (Virtual School)
Organizers: LEAD Kenneth Clarkson (IBM Research Division), Lior Horesh (IBM Thomas J. Watson Research Center), Misha Kilmer (Tufts University), Tamara Kolda (MathSci.ai), Shashanka Ubaru (IBM Thomas J. Watson Research Center)This summer school will introduce graduate students to sketchingbased approaches to computational linear and multilinear algebra. Sketching here refers to a set of techniques for compressing a matrix, to one with fewer rows, or columns, or entries, usually via various kinds of random linear maps. We will discuss matrix computations, tensor algebras, and such sketching techniques, together with their applications and analysis.
Updated on Mar 15, 2021 03:16 PM PDT 
MSRIUP MSRIUP 2021: Parking Functions: Choose your own adventure
Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Mercedes Franco (Queensborough Community College (CUNY)), LEAD Rebecca Garcia (Sam Houston State University), Pamela Harris (University of WisconsinMilwaukee), Candice Price (Smith College)The MSRIUP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.
In 2021, MSRIUP will focus on Parking Functions: Choose your own adventure. The research program will be led by Dr. Pamela E. Harris, Associate Professor of Mathematics at Williams College.
Updated on Feb 05, 2021 01:42 PM PST 
Workshop [Online] Workshop on Mathematics and Racial Justice
Organizers: Caleb Ashley (Boston College), Ron Buckmire (Occidental College), Duane Cooper (Morehouse College), Monica Jackson (American University), LEAD Omayra Ortega (Sonoma State University), LEAD Robin Wilson (Loyola Marymount University)The overarching goal of the Workshop on Mathematics and Racial Justice is to explore the role that mathematics plays in today’s movement for racial justice. For the purposes of this workshop, racial justice is the result of intentional, active and sustained antiracist practices that identify and dismantle racist structures and policies that operate to oppress, disenfranchise, harm, and devalue Black people. This workshop will bring together mathematicians, statisticians, computer scientists, and STEM educators as well as members of the general public interested in using the tools of these disciplines to critically examine and eradicate racial disparities in society. Researchers with expertise or interest in problems at the intersection of mathematics, statistics and racial justice are encouraged to participate. This workshop will take place over two weeks and will include sessions on Bias in Algorithms and Technology; Fair Division, Allocation, and Representation; Public Health Disparities; and Racial Inequities in Mathematics Education.
Updated on Jun 19, 2022 10:49 AM PDT 
Summer Graduate School Sparsity of Algebraic Points (Virtual School)
Organizers: Philipp Habegger (University of Basel), LEAD Hector Pasten (Pontificia Universidad Católica de Chile)The theory of Diophantine equations is understood today as the study of algebraic points in algebraic varieties, and it is often the case that algebraic points of arithmetic relevance are expected to be sparse.
This summer school will introduce the participants to two of the main techniques in the subject: (i) the filtration method to prove algebraic degeneracy of integral points by means of the subspace theorem, leading to special cases of conjectures by Bombieri, Lang, and Vojta, and (ii) unlikely intersections through ominimality and bialgebraic geometry, leading to results in the context of the ManinMumford conjecture, the AndréOort conjecture, and generalizations. This SGS should provide an entry point to a very active research area in modern number theory.
Updated on Mar 05, 2021 11:34 AM PST 
Summer Graduate School 2021 CRMPIMS Summer School in Probability (Virtual School)
Organizers: LEAD Louigi AddarioBerry (McGill University), Omer Angel (University of British Columbia), Alexander Fribergh (University of Montreal), Mathav Murugan (University of British Columbia), Edwin Perkins (University of British Columbia)The courses in this summer school focus on mathematical models of group dynamics, how to describe their dynamics and their scaling limits, and the connection to discrete and continuous optimization problems.
The phrase "group dynamics" is used loosely here  it may refer to species migration, the spread of a virus, or the propagation of electrons through an inhomogeneous medium, to name a few examples. Very commonly, such systems can be described via stochastic processes which approximately behave like the solution of an appropriate partial differential equation in the largepopulation limit.
Updated on Aug 09, 2021 02:04 PM PDT 
Summer Graduate School Séminaire de Mathématiques Supérieures 2021: Microlocal Analysis: Theory and Applications (Virtual School)
Organizers: Suresh Eswarathasan (Dalhousie University), Dmitry Jakobson (McGill University), Katya Krupchyk (University of California, Irvine), Stephane Nonnenmacher (Université de Paris XI)Microlocal analysis originated in the study of linear partial differential equations (PDEs) in the highfrequency regime, through a combination of ideas from Fourier analysis and classical Hamiltonian mechanics. In parallel, similar ideas and methods had been developed since the early times of quantum mechanics, the smallness of Planck’s constant allowing to use semiclassical methods. The junction between these two points of view (microlocal and semiclassical) only emerged in 1970s, and has taken its full place in the PDE community in the last 20 years. This methodology resulted in major advances in the understanding of linear and nonlinear PDEs in the last 50 years. Moreover, microlocal methods continue to find new applications in diverse areas of mathematical analysis, such as the spectral theory of nonselfadjoint operators, scattering theory, and inverse problems.
Updated on Aug 06, 2021 06:16 AM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2021: Initiating, Sustaining, and Researching Mathematics Department Transformation of Introductory Courses for STEM Majors
Organizers: Naneh Apkarian (Arizona State University), David Bressoud (Macalester College), Pamela Burdman (Just Equations), Jamylle Carter (Diablo Valley college), Ted Coe (Northwest Evaluation Association), Estrella Johnson (Virginia Polytechnic Institute and State University), W Gary Martin (Auburn University), Michael O'Sullivan (San Diego State University), William Penuel (University of Colorado), LEAD Chris Rasmussen (San Diego State University), Daniel Reinholz (San Diego State University), Wendy Smith (University of Nebraska), David Webb (University of Colorado at Boulder)NOTE: The introductory sessions for this workshop will be held online the morning of April 29th. Additional sessions will be held when it is once again possible to meet in person. Times listed on schedule is in Pacfic Standard Time.
The world is changing, along with perceptions. Many call for the improvement of mathematics teaching and learning, for both citizenry and STEM preparation. To achieve sustainable change, though, the focus needs to extend from individuals to systems. It is not enough to change one classroom or one course. Transformation requires change at all levels: in teaching, programmatic practices, and institutions. This workshop will bring together teachers and researchers from universities, community colleges, and K12 schools to explore the reasons for and processes by which change in university mathematics departments is initiated, promoted, and sustained and lessons learned from change efforts in K12. It will review what we know about change at all levels and reflect on stories of failure and success.
Updated on Feb 22, 2021 09:57 AM PST 
Seminar ADJOINT Research Seminar: Validated Computation of Special Mathematical Functions
The advent of reliable computing machines, computer algebra systems, and multiple precision computational packages diminished the need for tables of reference values for computing function values by interpolation, but today's numerical analysts, scientific researchers, and software developers still need a way to confirm the accuracy of numerical algorithms that compute mathematical function values. The field of validated computation of mathematical functions explores the development of multiple precision codes that compute certifiably accurate function values that can be used to test the accuracy of function data from personal, commercial, or publicly available codes. We discuss the analysis used to obtain reliable error bounds for floating point approximations and describe the implementation of the work in a publicly available beta site.
Updated on Jan 26, 2022 03:02 AM PST 
Seminar ADJOINT Research Seminar: PostLockdown Dynamics of COVID19 in several key regions of the US
In the context of several key states in the U.S.A, we will review the basics of COVID19 and consider the postlockdown dynamics. In particular we will discuss the main drivers of the disease and the drawbacks to a natural herd immunity strategy. This talk represents joint work with Kamal Barley, Keisha Cook and Abba Gumel.
Updated on Jan 26, 2022 03:02 AM PST 
Workshop 2020 SACNAS – The National Diversity in STEM Conference
The largest multidisciplinary and multicultural STEM diversity event in the country, the SACNAS conference serves to equip, empower, and energize participants for their academic and professional paths in STEM.
For more information, click HERE.
Updated on Nov 23, 2020 09:36 AM PST 
Summer Graduate School Introduction to water waves [Virtual Summer Graduate School]
Organizers: Mihaela Ifrim (University of WisconsinMadison), Daniel Tataru (University of California, Berkeley)Due to the COVID19 pandemic, this summer school will be held online.
The purpose of this two weeks school is to introduce graduate students to the state of the art methods and results in the study of incompressible Euler’s equations in general, and water waves in particular. This is a research area which is highly relevant to many real life problems, and in which substantial progress has been made in the last decade.
The goal is to present the main current research directions in water waves. We will begin with the physical derivation of the equations, and present some of the analytic tools needed in study. The final goal will be twofold, namely (i) to understand the local solvability of the Cauchy problem for water waves, as well as (ii) to describe the long time behavior of solutions.
Through the lectures and associated problem sessions, students will learn about a number of new analysis tools which are not routinely taught in a graduate school curriculum. The goal is to help students acquire the knowledge needed in order to start research in water waves and Euler equations.
Updated on Feb 05, 2021 10:13 AM PST 
Summer Graduate School Séminaire de Mathématiques Supérieures 2020: Discrete Probability, Physics and Algorithms (Montréal, Canada) [Virtual Summer Graduate School]
Organizers: Gérard Ben Arous (New York University, Courant Institute), LEAD Alexander Fribergh (University of Montreal), Lea Popovic (Concordia University)Due to the COVID19 pandemic, this summer school will be held online.
Probability theory, statistics as well as mathematical physics have increasingly been used in computer science. The goal of this school is to provide a unique opportunity for graduate students and young researchers to developed multidisciplinary skills in a rapidly evolving area of mathematics.
The topics would include spin glasses, constraint satisfiability, randomized algorithms, MonteCarlo Markov chains and highdimensional statistics, sparse and random graphs, computational complexity, estimation and approximation algorithms. Those topics will fall into two main categories, on the one hand problems related to spin glasses and on the other hand random algorithms.
The part of the summer school dedicated to spin glasses will be split into three parts: an introductory course about traditional spin glasses followed by two more advanced courses where spin glasses meet computer science in addition to a talk on dynamics of spin glasses. The part of the summer school on random algorithms will consist of an introductory course on phase transitions in large random structures, followed by advanced courses on theoretical bounds for computational complexity in reconstruction and inference, and on understanding rare events in random graphs and models of statistical mechanics.
The two introductory courses on spin glasses and on random algorithms will be accompanied by three exercises sessions of one hour. A one hour exercises session will follow each of the three sessions of a course for both the introductory course on spin glasses and the introductory course on random algorithms. Exercises sessions will be led by an assistant, but will primarily focus on participation of the students.
Updated on May 26, 2020 12:21 PM PDT 
MSRIUP MSRIUP 2020: Branched Covers of Curves
Organizers: Federico Ardila (San Francisco State University), LEAD Duane Cooper (Morehouse College), Maria Mercedes Franco (Queensborough Community College (CUNY)), Rebecca Garcia (Sam Houston State University), Edray Goins (Pomona College), Suzanne Weekes (SIAM  Society of Industrial and Applied Mathematics)The MSRIUP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.
In 2020, MSRIUp will focus on Branched Covers of Curves. The research program will be led by Dr. Edray Goins, Professor of Mathematics at Pomona College.
Updated on Jul 22, 2020 03:11 PM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
On May 22 portions of the Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools workshop will be streamed online via Zoom.
Friday 5/22: 12pm PST (3pm eastern time)
12:00  1:00
Rico Gutstein, Preparing Students Today for Whatever Tomorrow BringsUpdated on May 28, 2020 08:56 AM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
On May 15 portions of the Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools workshop will be streamed online via Zoom.
Friday 5/15: 12pm PST (3pm eastern time)
12:00  1:00
Dan Reinholz, Preparing teachers to notice, name, and disrupt racial and gender inequityUpdated on May 28, 2020 08:53 AM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
Friday 5/8: 12pm PST (3pm eastern time)
12:00  1:00
Nathan Alexander, Mathematical Models in the Sociological Imagination
Lincoln Chandler, Pursuing Racial Equity within SchoolsUpdated on May 12, 2020 08:42 AM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
Friday 5/01: 12pm PST (3pm eastern time)
12:00  1:00 Hyman Bass, 'Mathematics and Social Justice': An undergraduate course. What could this be?
Updated on May 12, 2020 08:41 AM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
Friday 4/24: 12pm PST (3pm eastern time)
12:00  1:00 Padmanabhan Seshaiyer, K12 to PostSecondary Viewpoint Critical Issues in Mathematics Education
Updated on May 12, 2020 08:41 AM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
Friday 4/17: 12pm PST (3pm eastern time)12:00  1:00 Some unintended consequences of active learning
Sage ForbesGray, Sunset Park High School, Brooklyn, NY, Mfa Master Teacher
Sharon Collins  New Heights Academy Charter School, NYC, MfA Master Teacher;
Kate Belin  Fannie Lou High School, NYC, MfA Master Teacher;Moderator: Courtney Ginsberg, MfA
Host: Katherine Stevenson, CSUNUpdated on May 12, 2020 08:41 AM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
Friday 4/10: 12pm PST (3pm eastern time)
12:00  1:00 Estrella Johnson, Some unintended consequences of active learning
Updated on May 12, 2020 08:40 AM PDT 
Workshop {Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
Friday 3/27: Starting at 12pm PST (3pm eastern time)
12:00p  1:00p
Nicol Turner Lee, Brookings Inst., Center for Tech Innov.  Unconscious Bias
Saber Khan, Processing Foundation, leader of #EthicalCS  Identity & EthicsUpdated on May 12, 2020 08:40 AM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
Friday 3/20: Starting at 12pm PST (3pm eastern time)12:00p  12:45p Lisa Goldberg, Hot Hands: What Data Science Can (and Can't) Tell Us About Basketball Trends
12:45p  1:00p Discussion with Lisa and Kate on: What Bayes tells us about our ability to reason about randomnessUpdated on May 12, 2020 08:37 AM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
On March 12 and March 13, portions of the Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools workshop will be streamed online via Zoom. Only the talks below will are scheduled at this time. Further talks may be scheduled at a later date, and you will be notified when we know more.
Please see the schedule below, as well as links to the two sessions.
Thursday 3/12: Starting at 9am PST (noon eastern time)
9:00  9:10 Welcoming remarks
9:10  9:15 Introduction to CIME 2020 plan and speaker David Daley
9:15  9:55 David Daley, Why Your Vote Doesn't Count
9:55  10:00 Kate Stevenson, introduction of activity
10:0010:30 Mathical Book Prize Announcement
Friday 3/13: Starting at 9am PST (noon eastern time)
9:00  9:05 Introduction of speaker Wesley Pegden
9:05  9:45 Wesley Pegden, Bringing Mathematics to the Courtroom
9:45  10:00 Q&A
A formal Notice of Change letter is available here, which can be shared with your institution, funding agency, and others.
Updated on May 28, 2020 08:57 AM PDT 
Workshop Symposium in Honor of Julia Robinson’s 100th Birthday
Organizers: Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), Thomas Scanlon (University of California, Berkeley), Carol Wood (Wesleyan University)MSRI will host a Symposium on the occasion of Julia Robinson’s 100th birthday on Monday, December 9, 2019 at MSRI. Julia Robinson (19191985) was an internationally renowned logician of the twentieth century. She was a trailblazer in mathematics as well as in many other ways: she was the first woman president of the American Mathematical Society, and the first woman mathematician elected to membership in the National Academy of Sciences.
Participating speakers in this daylong celebration of her work and of current mathematics insprired by her research include: Martin Davis, Kirsten Eisentrager, Yuri Matiyasevich, and Lou van den Dries. Following the symposium, Lenore Blum will give a public lecture at UC Berkeley.
Updated on Nov 22, 2019 03:54 PM PST 
Workshop Modern Math Workshop 2019
Organizers: Sudipta Dasmohapatra (Duke University ), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Michael Singer (North Carolina State University), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))As part of the Mathematical Sciences Collaborative Diversity Initiatives, six mathematics institutes are pleased to host their annual SACNAS preconference event, the 2019 Modern Math Workshop (MMW). The Modern Math Workshop is intended to encourage minority undergraduates to pursue careers in the mathematical sciences and to assist undergraduates, graduate students and recent PhDs in building their research networks.
Updated on Dec 18, 2019 02:42 PM PST 
Summer Graduate School Toric Varieties (National Center for Theoretical Sciences, Taipei, Taiwan)
Organizers: David Cox (Amherst College), Henry Schenck (Auburn University)Toric varieties are algebraic varieties defined by combinatorial data, and there is a wonderful interplay between algebra, combinatorics and geometry involved in their study. Many of the key concepts of abstract algebraic geometry (for example, constructing a variety by gluing affine pieces) have very concrete interpretations in the toric case, making toric varieties an ideal tool for introducing students to abstruse concepts.
Updated on Jul 14, 2020 04:08 PM PDT 
Summer Graduate School Mathematics of Machine Learning
Organizers: Sebastien Bubeck (Microsoft Research), Anna Karlin (University of Washington), Adith Swaminathan (Microsoft Research)Learning theory is a rich field at the intersection of statistics, probability, computer science, and optimization. Over the last decades the statistical learning approach has been successfully applied to many problems of great interest, such as bioinformatics, computer vision, speech processing, robotics, and information retrieval. These impressive successes relied crucially on the mathematical foundation of statistical learning.
Recently, deep neural networks have demonstrated stunning empirical results across many applications like vision, natural language processing, and reinforcement learning. The field is now booming with new mathematical problems, and in particular, the challenge of providing theoretical foundations for deep learning techniques is still largely open. On the other hand, learning theory already has a rich history, with many beautiful connections to various areas of mathematics (e.g., probability theory, high dimensional geometry, game theory). The purpose of the summer school is to introduce graduate students (and advanced undergraduates) to these foundational results, as well as to expose them to the new and exciting modern challenges that arise in deep learning and reinforcement learning.
Updated on Aug 01, 2019 10:00 AM PDT 
Summer Graduate School HPrinciple (INdAM, Cortona, Italy)
Organizers: LEAD Emmy Murphy (Northwestern University), Takashi Tsuboi (University of Tokyo)This two week summer school will introduce graduate students to the theory of hprinciples. After building up the theory from basic smooth topology, we will focus on more recent developments of the theory, particularly applications to symplectic and contact geometry, fluid dynamics, and foliation theory.
Updated on Aug 08, 2019 09:31 AM PDT 
Summer Graduate School Recent topics on wellposedness and stability of incompressible fluid and related topics
Organizers: LEAD Yoshikazu Giga (University of Tokyo), Maria Schonbek (University of California, Santa Cruz), Tsuyoshi Yoneda (Hitotsubashi University)The purpose of the workshop is to introduce graduate students to fundamental results on the NavierStokes and the Euler equations, with special emphasis on the solvability of its initial value problem with rough initial data as well as the large time behavior of a solution. These topics have long research history. However, recent studies clarify the problems from a broad point of view, not only from analysis but also from detailed studies of orbit of the flow.
Updated on Aug 19, 2019 04:17 PM PDT 
Summer Graduate School Polynomial Method
Organizers: Adam Sheffer (Bernard M. Baruch College, CUNY), LEAD Joshua Zahl (University of British Columbia)In the past eight years, a number of longstanding open problems in combinatorics were resolved using a new set of algebraic techniques. In this summer school, we will discuss these new techniques as well as some exciting recent developments.
Updated on Jul 12, 2019 03:36 PM PDT 
Summer Graduate School Séminaire de Mathématiques Supérieures 2019: Current trends in Symplectic Topology
Organizers: Octav Cornea (Université de Montréal), Yakov Eliashberg (Stanford University), Michael Hutchings (University of California, Berkeley), Egor Shelukhin (Université de Montréal)Symplectic topology is a fast developing branch of geometry that has seen phenomenal growth in the last twenty years. This two weeks long summer school, organized in the setting of the Séminaire de Mathématiques Supérieures, intends to survey some of the key directions of development in the subject today thus covering: advances in homological mirror symmetry; applications to hamiltonian dynamics; persistent homology phenomena; implications of flexibility and the dichotomy flexibility/rigidity; legendrian contact homology; embedded contact homology and fourdimensional holomorphic techniques and others. With the collaboration of many of the top researchers in the field today, the school intends to serve as an introduction and guideline to students and young researchers who are interested in accessing this diverse subject.
Updated on Dec 10, 2018 04:21 PM PST 
Summer Graduate School Geometric Group Theory
Organizers: LEAD Rita Jiménez Rolland (Instituto de Matematicás, UNAMOaxaca), LEAD Pierre Py (Universidad Nacional Autónoma de México)Geometric group theory studies discrete groups by understanding the connections between algebraic properties of these groups and topological and geometric properties of the spaces on which they act. The aim of this summer school is to introduce graduate students to specific central topics and recent developments in geometric group theory. The school will also include students presentations to give the participants an opportunity to practice their speaking skills in mathematics. Finally, we hope that this meeting will help connect Latin American students with their American and Canadian counterparts in an environment that encourages discussion and collaboration.
Updated on Jul 03, 2019 11:35 AM PDT 
Summer Graduate School Representation stability
Organizers: Thomas Church (Stanford University), LEAD Andrew Snowden (University of Michigan), Jenny Wilson (University of Michigan)This summer school will give an introduction to representation stability, the study of algebraic structural properties and stability phenomena exhibited by sequences of representations of finite or classical groups  including sequences arising in connection to hyperplane arrangements, configuration spaces, mapping class groups, arithmetic groups, classical representation theory, Deligne categories, and twisted commutative algebras. Representation stability incorporates tools from commutative algebra, category theory, representation theory, algebraic combinatorics, algebraic geometry, and algebraic topology. This workshop will assume minimal prerequisites, and students in varied disciplines are encouraged to apply.
Updated on Jul 03, 2019 03:47 PM PDT 
MSRIUP MSRIUP 2019: Combinatorics and Discrete Mathematics
Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Mercedes Franco (Queensborough Community College (CUNY)), LEAD Rebecca Garcia (Sam Houston State University), Pamela Harris (University of WisconsinMilwaukee), Suzanne Weekes (SIAM  Society of Industrial and Applied Mathematics)The MSRIUP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.
In 2019, MSRIUp will focus on the application of combinatorial arguments and techniques to enumerate, examine, and investigate the existence of discrete mathematical structures with certain properties. The areas of interest for these applications encompass a wide range of mathematical fields and will include algebra, number theory, and graph theory, through weight multiplicity computations, the study of vector partition functions, and graph domination problems, respectively. The research program will be led by Dr. Pamela E. Harris, Assistant Professor of Mathematics at Williams College.
Updated on Jul 22, 2020 02:54 PM PDT 
Summer Graduate School Random and arithmetic structures in topology
Organizers: LEAD Alexander Furman (University of Illinois at Chicago), Tsachik Gelander (Weizmann Institute of Science)The study of locally symmetric manifolds, such as closed hyperbolic manifolds, involves geometry of the corresponding symmetric space, topology of towers of its finite covers, and numbertheoretic aspects that are relevant to possible constructions.The workshop will provide an introduction to these and closely related topics such as lattices, invariant random subgroups, and homological methods.Updated on Jul 09, 2019 08:17 AM PDT 
Workshop Improving the Preparation of Graduate Students to Teach Undergraduate Mathematics
Organizers: Jack Bookman (Duke University), Shandy Hauk (San Francisco State University), LEAD Dave Kung (University of Texas at Austin), LEAD Natasha Speer (University of Maine)Is your department interested in helping graduate students learn to teach? Perhaps your department is considering starting a teachingfocused professional development program. Or maybe your department has a program but is interested in updating and enhancing it.
Many departments now offer presemester orientations, semesterlong seminars, and other opportunities for graduate students who are new to teaching so they will be wellequipped to provide highquality instruction to undergraduates. The purpose of this workshop is to support faculty from departments that are considering starting a teachingfocused professional development program or, for departments that have a program, to learn ways to improve it.
Updated on Mar 04, 2019 04:57 PM PST 
Summer Graduate School Commutative Algebra and its Interaction with Algebraic Geometry
Organizers: Craig Huneke (University of Virginia), Sonja Mapes (University of Notre Dame), Juan Migliore (University of Notre Dame), LEAD Claudia Polini (University of Notre Dame), Claudiu Raicu (University of Notre Dame)Linkage is a method for classifying ideals in local rings. Residual intersections is a generalization of linkage to the case where the two `linked' ideals need not have the same codimension. Residual intersections are ubiquitous: they play an important role in the study of blowups, branch and multiple point loci, secant varieties, and Gauss images; they appear naturally in intersection theory; and they have close connections with integral closures of ideals.
Commutative algebraists have long used the Frobenius or pth power map to study commutative rings containing a finite field. The theory of tight closure and test ideals has widespread applications to the study of symbolic powers and to BrianconSkoda type theorems for equicharacteristic rings.
Numerical conditions for the integral dependence of ideals and modules have a wealth of applications, not the least of which is in equisingularity theory. There is a long history of generalized criteria for integral dependence of ideals and modules based on variants of the HilbertSamuel and the BuchsbaumRim multiplicity that still require some remnants of finite length assumptions.
The Rees ring and the special fiber ring of an ideal arise in the process of blowing up a variety along a subvariety. Rees rings and special fiber rings also describe, respectively, the graphs and the images of rational maps between projective spaces. A difficult open problem in commutative algebra, algebraic geometry, elimination theory, and geometric modeling is to determine explicitly the equations defining graphs and images of rational maps.
The school will consist of the following four courses with exercise sessions plus a Macaulay2 workshop
 Linkage and residual intersections
 Characteristic p methods and applications
 Blowup algebras
 Multiplicity theory
Updated on May 29, 2019 09:11 AM PDT 
Workshop Critical Issues in Mathematics Education 2019: Mathematical Modeling in K16: Community and Cultural Contexts
Organizers: Julia Aguirre (University of Washington  Tacoma), LEAD Cynthia Anhalt (University of Arizona), Staffas Broussard (The Algebra Project), Ricardo Cortez (Tulane University), Michael Driskill (Math for America ), Sol Garfunkel (Consortium for Mathematics and Its Applications (COMAP)), Genetha Gray (Salesforce), Maria Hernandez (North Carolina School of Science and Mathematics), LEAD Rachel Levy (American Mathematical Society), Javier Rojo (Oregon State)Mathematical Modeling (MM) now has increased visibility in the education system and in the public domain. It appears as a content standard for high school mathematics and a mathematical practice standard across the K12 curriculum (Common Core Standards; and other states’ standards in mathematics education). Job opportunities are increasing in business, industry and government for those trained in the mathematical sciences. Quantitative reasoning is foundational for civic engagement and decisionmaking for addressing complex social, economic, and technological issues. Therefore, we must take action to support and sustain a significant increase in the teaching and learning of mathematical modeling from Kindergarten through Graduate School.
Mathematical modeling is an iterative process by which mathematical concepts and structures are used to analyze or gain qualitative and quantitative understanding of real world situations. Through modeling students can make genuine mathematical choices and decisions that take into consideration relevant contexts and experiences.
Mathematical modeling can be a vehicle to accomplish multiple pedagogical and mathematical goals. Modeling can be used to introduce new material, solidify student understanding of previously learned concepts, connectthe world to the classroom, make concrete the usefulness (maybe even the advantages) of being mathematically proficient, and provide a rich context to promote awareness of issues of equity, sociopolitical injustices, and cultural relevance in mathematics.
A critical issue in math education is that although mathematical modeling is part of the K12 curriculum, the great majority of teachers have little experience with mathematical modeling as learners of mathematics or in their teacher preparation. In some cases, mathematics teacher educators have limited experience with mathematical modeling while being largely responsible for preparing future teachers.
Currently, the knowledge in teaching and learning MM is underdeveloped and underexplored. Very few MM resources seem to reach the K16 classrooms. Collective efforts to build a cohesive curriculum in MM and exploration of effective teaching practices based on research are necessary to make mathematical modeling accessible to teacher educators, teachers and students.
At the undergraduate level, mathematical modeling has traditionally been reserved for university courses for students in STEM majors beyond their sophomore year. Many of these courses introduce models but limit the students’ experience to using models that were developed by others rather than giving students the opportunity to generate their own models as is common in everyday life, in modeling competitions and in industry.
The CIME workshop on MM will bring together mathematicians, teacher educators, K12 teachers, faculty and people in STEM disciplines. As partners we can address ways to realize mathematical modeling in the K12 classrooms, teacher preparation, and lower and upper division coursework at universities. The content and pedagogy associated with teaching mathematical modeling needs special attention due to the nature of modeling as a process and as a body of content knowledge.
Updated on Aug 15, 2022 02:02 PM PDT 
Workshop 2018 BlackwellTapia Conference and Award Banquet
The NSF Mathematical Sciences Institutes Diversity Committee hosts the 2018 BlackwellTapia Conference and Awards Ceremony. This is the ninth conference since 2000, held every other year, with the location rotating among NSF Mathematics Institutes. The conference and prize honors David Blackwell, the first AfricanAmerican member of the National Academy of Science, and Richard Tapia, winner of the National Medal of Science in 2010, two seminal figures who inspired a generation of AfricanAmerican, Native American and Latino/Latina students to pursue careers in mathematics. The BlackwellTapia Prize recognizes a mathematician who has contributed significantly to research in his or her area of expertise, and who has served as a role model for mathematical scientists and students from underrepresented minority groups, or has contributed in other significant ways to addressing the problem of underrepresentation of minorities in math.
The 2018 recipient of the BlackwellTapia Prize is Dr. Ronald E. Mickens, the Distinguished Fuller E. Callaway Professor in the Department of Physics at Clark Atlanta University.
The conference will include scientific talks, poster presentations, panel discussions, ample opportunities for networking, and the awarding of the BlackwellTapia Prize. Participants are invited from all career stages and will represent institutions of all sizes across the country, including Puerto Rico.
Updated on May 08, 2018 12:46 PM PDT 
Workshop 2018 Modern Math Workshop
Organizers: Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), LEAD Elvan Ceyhan (SAMSI  Statistical and Applied Mathematical Sciences Institute), Leslie McClure (SAMSI  Statistical and Applied Mathematical Sciences Institute), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))The Mathematical Sciences Diversity Initiative holds a Modern Math Workshop (MMW) prior to the SACNAS National Conference each year. The 2018 MMW will be hosted by SAMSI at the Henry B. Gonzalez Convention Center, San Antonio, Texas on October 10th and 11th, 2018. This workshop is intended to encourage undergraduates, graduate students and recent PhDs from underrepresented minority groups to pursue careers in the mathematical sciences and build research and mentoring networks. The Modern Math Workshop is a preconference event at the SACNAS National Conference. The MMW includes a keynote lecture, minicourses, research talks, a question and answer session and a reception.
Updated on Mar 15, 2018 12:33 PM PDT 
Summer Graduate School From Symplectic Geometry to Chaos
Organizers: Marcel Guardia (Polytechnical University of Cataluña (Barcelona) ), vadim kaloshin (University of Maryland), Leonid Polterovich (Tel Aviv University)The purpose of the summer school is to introduce graduate students to stateoftheart methods and results in Hamiltonian systems and symplectic geometry. We focus on recent developments on the study of chaotic motion in Hamiltonian systems and its applications to models in Celestial Mechanics.
Updated on Jul 31, 2018 12:12 PM PDT 
Summer Graduate School Representations of High Dimensional Data
Organizers: Blake Hunter (Microsoft), Deanna Needell (University of California, Los Angeles)In today's world, data is exploding at a faster rate than computer architectures can handle. This summer school will introduce students to modern and innovative mathematical techniques that address this phenomenon. Handson topics will include data mining, compression, classification, topic modeling, largescale stochastic optimization, and more.Updated on Jul 19, 2018 11:45 AM PDT 
Summer Graduate School IAS/PCMI 2018: Harmonic Analysis
Organizers: Carlos Kenig (University of Chicago), Fanghua Lin (New York University, Courant Institute), Svitlana Mayboroda (University of Minnesota, Twin Cities), Tatiana Toro (MSRI  Mathematical Sciences Research Institute)Harmonic analysis is a central field of mathematics with a number of applications to geometry, partial differential equations, probability, and number theory, as well as physics, biology, and engineering. The Graduate Summer School will feature minicourses in geometric measure theory, homogenization, localization, free boundary problems, and partial differential equations as they apply to questions in or draw techniques from harmonic analysis. The goal of the program is to bring together students and researchers at all levels interested in these areas to share exciting recent developments in these subjects, stimulate further interactions, and inspire the new generation to pursue research in harmonic analysis and its applications.
Updated on Jun 20, 2018 12:17 PM PDT 
Summer Graduate School Derived Categories
Organizers: Nicolas Addington (University of Oregon), LEAD Alexander Polishchuk (University of Oregon)The goal of the school is to give an introduction to basic techniques for working with derived categories, with an emphasis on the derived categories of coherent sheaves on algebraic varieties. A particular goal will be to understand Orlov’s equivalence relating the derived category of a projective hypersurface with matrix factorizations of the corresponding polynomial.Updated on Jul 05, 2018 09:05 AM PDT 
Summer Graduate School Hprinciple
Organizers: Emmy Murphy (Northwestern University), Takashi Tsuboi (University of Tokyo)This two week summer school will introduce graduate students to the theory of hprinciples. After building up the theory from basic smooth topology, we will focus on more recent developments of the theory, particularly applications to symplectic and contact geometry, and foliation theory.
Updated on Jun 20, 2018 12:17 PM PDT 
Summer Graduate School Mathematical Analysis of Behavior
Organizers: Ann Hermundstad (Janelia Research Campus, HHMI), Vivek Jayaraman (Janelia Research Campus, HHMI), Eva Kanso (University of Southern California), L. Mahadevan (Harvard University)Explore Outstanding Phenomena in Animal Behavior
Jointly hosted by Janelia and the Mathematical Sciences Research Institute (MSRI), this program will bring together 1520 advanced PhD students with complementary expertise who are interested in working at the interface of mathematics and biology. Emphasis will be placed on linking behavior to neural dynamics and exploring the coupling between these processes and the natural sensory environment of the organism. The aim is to educate a new type of global scientist that will work collaboratively in tackling complex problems in cellular, circuit and behavioral biology by combining experimental and computational techniques with rigorous mathematics and physics.
Updated on Jun 20, 2018 12:16 PM PDT 
MSRIUP MSRIUP 2018: The Mathematics of Data Science
Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), LEAD Maria Mercedes Franco (Queensborough Community College (CUNY)), Rebecca Garcia (Sam Houston State University), David Uminsky (University of Chicago), Suzanne Weekes (SIAM  Society of Industrial and Applied Mathematics)The MSRIUP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.
In 2018, MSRIUP will focus on the core role of (linear) algebra in current research and application areas of Data Science ranging from unsupervised learning, clustering and networks, to algebraic signal processing and feature extraction, to the central role linear algebra plays in deep machine learning. The research program will be led by Dr. David Uminsky, Associate Professor of Mathematics and Statistics at the University of San Francisco.
Updated on Jul 22, 2020 02:56 PM PDT 
Summer Graduate School The ∂Problem in the TwentyFirst Century
Organizers: Debraj Chakrabarti (Central Michigan University), Jeffery McNeal (Ohio State University)This Summer Graduate School will introduce students to the modern theory of the inhomogeneous CauchyRiemann equation, the fundamental partial differential equation of Complex Analysis. This theory uses powerful tools of partial differential equations, differential geometry and functional analysis to obtain a refined understanding of holomorphic functions on complex manifolds. Besides students planning to work in complex analysis, this course will be valuable to those planning to study partial differential equations, complex differential and algebraic geometry, and operator theory. The exposition will be selfcontained and the prerequisites will be kept at a minimum
Updated on Jun 21, 2018 01:13 PM PDT 
Summer Graduate School Séminaire de Mathématiques Supérieures 2018: Derived Geometry and Higher Categorical Structures in Geometry and Physics
Organizers: Anton Alekseev (Université de Genève), Ruxandra Moraru (University of Waterloo), Chenchang Zhu (Universität Göttingen)Higher categorical structures and homotopy methods have made significant influence on geometry in recent years. This summer school is aimed at transferring these ideas and fundamental technical tools to the next generation of mathematicians.
The summer school will focus on the following four topics: higher categorical structures in geometry, derived geometry, factorization algebras, and their application in physics. There will be eight to ten mini courses on these topics, including mini courses led by Chirs Brav, Kevin Costello, Jacob Lurie, and Ezra Getzler. The prerequisites will be kept at a minimum, however, a introductory courses in differential geometry, algebraic topology and abstract algebra are recommended.Updated on Jun 20, 2018 12:16 PM PDT 
Workshop The 2018 Infinite Possibilities Conference
Organizers: Alejandra Alvarado (U.S. Navy), Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), Rebecca Garcia (Sam Houston State University), Katharine Gurski (Howard University), LEAD Lily Khadjavi (Loyola Marymount University), Candice Price (Smith College), Kimberly Sellers (Georgetown University), Talitha Washington (Clark Atlanta University; Atlanta University Center Consortium), Kimberly Weems (North Carolina Central University), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))The Infinite Possibilities Conference (IPC) is a national conference that is designed to promote, educate, encourage and support women of color interested in mathematics and statistics, as a step towards addressing the underrepresentation of AfricanAmericans, Latinas, Native Americans, and Pacific Islanders in these fields.
IPC aims to:
 fulfill a need for role models and communitybuilding
 provide greater access to information and resources for success in graduate school and beyond
 raise awareness of factors that can support or impede underrepresented women in the mathematical sciences
A unique gathering, the conference brings together participants from across the country, at all stages of education and career, for mentoring and mathematics.
Updated on May 18, 2018 12:18 PM PDT 
Workshop Latinx in the Mathematical Sciences Conference 2018
Organizers: Federico Ardila (San Francisco State University), Ricardo Cortez (Tulane University), Tatiana Toro (MSRI  Mathematical Sciences Research Institute), Mariel Vazquez (University of California, Davis)On March 810, 2018, IPAM will host a conference showcasing the achievements of Latinx in the mathematical sciences. The goal of the conference is to encourage Latinx to pursue careers in the mathematical sciences, to promote the advancement of Latinx currently in the discipline, to showcase research being conducted by Latinx at the forefront of their fields, and, finally, to build a community around shared academic interests. The conference will be held on the UCLA campus in Los Angeles, CA. It will begin at noon on Thursday, March 8.
This conference is sponsored by the Mathematical Sciences Institutes Diversity Initiative, with funding from the National Science Foundation Division of Mathematical Sciences.
Updated on Oct 23, 2017 04:53 PM PDT 
Workshop Critical Issues in Mathematics Education 2018: Access to mathematics by opening doors for students currently excluded from mathematics
Organizers: Aditya Adiredja (University of Arizona), LEAD Julia Aguirre (University of Washington  Tacoma), Kate Belin (Fannie Lou Hamer Freedom High School), LEAD Ricardo Cortez (Tulane University), Michael Driskill (Math for America ), Nicole Joseph (Vanderbilt University), Katherine Stevenson (California State University, Northridge), Francis Su (Harvey Mudd College), Maria del Rosario Zavala (San Francisco State University)Our mathematics education system is inequitable. It operates in ways that leave a significant proportion of students with negative mathematics experiences and inadequate mathematical preparation. The problem is historical and systemic, and the students most disaffected by the current system are overwhelmingly Black and Latino, Indigenous, poor, women, immigrant or first generation college students. If our mathematics community is to sustainably grow and thrive, mathematics education at all levels must be transformed.
This workshop focuses on students for whom we do not yet successfully ensure access to and advancement in mathematics. Sessions will share relevant programmatic efforts and innovative research that have been shown to maintain or increase students’ engagement and interests in mathematics across k12, undergraduate and graduate education. The sessions will focus particularly on reproducible efforts that affirm those students’ identities and their diverse intellectual resources and lived experiences. These efforts at various levels of mathematics education will highlight ways in which meaningful experiences in mathematics can disrupt ongoing systemic oppression. Participants will leave with conceptual and practical ways to open up and elevate mathematics education where all students thrive.
Updated on Jul 03, 2018 09:03 AM PDT 
Workshop Modern Math Workshop 2017
Organizers: Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), Leslie McClure (SAMSI  Statistical and Applied Mathematical Sciences Institute), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))As part of the Mathematical Sciences Collaborative Diversity Initiatives, nine mathematics institutes are pleased to offer their annual SACNAS preconference event, the 2017 Modern Math Workshop (MMW). The Modern Math Workshop is intended to encourage minority undergraduates to pursue careers in the mathematical sciences and to assist undergraduates, graduate students and recent PhDs in building their research networks. The Modern Math Workshop is part of the SACNAS National Conference; the workshop and the conference take place in the Salt Palace Convention Center in Salt Lake City, Utah. The MMW starts at 1:00 pm on Wednesday, October 18 with registration beginning at noon.
Updated on Oct 12, 2017 02:36 PM PDT 
Summer Graduate School Automorphic Forms and the Langlands Program
Organizers: LEAD Kevin Buzzard (Imperial College, London)The summer school will be an introduction to the more algebraic aspects of the theory of automorphic forms and representations. One of the goals will be to understand the statements of the main conjectures in the Langlands programme. Another will be to gain a good working understanding of the fundamental definitions in the theory, such as principal series representations, the Satake isomorphism, and of course automorphic forms and representations for groups such as GL_n and its inner forms.
Updated on Aug 04, 2017 11:02 AM PDT 
Summer Graduate School Nonlinear dispersive PDE, quantum many particle systems and the world between
Organizers: Natasa Pavlovic (University of Texas, Austin), Gigliola Staffilani (Massachusetts Institute of Technology), Nikolaos Tzirakis (University of Illinois at UrbanaChampaign)The purpose of the summer school is to introduce graduate students to the recent developments in the area of dispersive partial differential equations (PDE), which have received a great deal of attention from mathematicians, in part due to ubiquitous applications to nonlinear optics, water wave theory and plasma physics.
Recently remarkable progress has been made in understanding existence and uniqueness of solutions to nonlinear Schrodinger (NLS) and KdV equations, and properties of those solutions. We will outline the basic tools that were developed to address these questions. Also we will present some of recent results on derivation of NLS equations from quantum many particle systems and will discuss how methods developed to study the NLS can be relevant in the context of the derivation of this nonlinear equation.
Updated on Sep 12, 2017 02:02 PM PDT 
Summer Graduate School Séminaire de Mathématiques Supérieures 2017: Contemporary Dynamical Systems
Organizers: Sylvain Crovisier (Université de Paris VI (Pierre et Marie Curie)Université de Paris XI (ParisSud)), LEAD Konstantin Khanin (University of Toronto), Andrés Navas Flores (University of Santiago de Chile), Christiane Rousseau (Université de Montréal), Marcelo Viana (Institute of Pure and Applied Mathematics (IMPA)), Amie Wilkinson (University of Chicago)The theory of dynamical systems has witnessed very significant developments in the last decades, including the work of two 2014 Fields medalists, Artur Avila and Maryam Mirzakhani. The school will concentrate on the recent significant developments in the field of dynamical systems and present some of the present main streams of research. Two central themes will be those of partial hyperbolicity on one side, and rigidity, group actions and renormalization on the other side. Other themes will include homogeneous dynamics and geometry and dynamics on infinitely flat surfaces (both providing connections to the work of Maryam Mirzakhani), topological dynamics, thermodynamical formalism, singularities and bifurcations in analytic dynamical systems.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Positivity Questions in Geometric Combinatorics
Organizers: Eran Nevo (The Hebrew University of Jerusalem), Raman Sanyal (Johann Wolfgang GoetheUniversität Frankfurt)McMullen’s gConjecture from 1970 is a shining example of mathematical foresight that combined all results available at that time to conjure a complete characterization of face numbers of convex simple/simplicial polytopes. The key statement in its verification is that certain combinatorial numbers associated to geometric (or topological) objects are nonnegative. The aim of this workshop is to introduce graduate students to selected contemporary topics in geometric combinatorics with an emphasis on positivity questions. It is fascinating that the dual notions of simple and simplicial polytopes lead to different but equally powerful algebraic frameworks to treat such questions. A key feature of the lectures will be the simultaneous development of these algebraic frameworks from complementary perspectives: combinatorialtopological and convexgeometric. General concepts (such as Lefschetz elements, Hodge–Riemann–Minkowski inequalities) will be developed sidebyside, and analogies will be drawn to concepts in algebraic geometry, Fourier analysis, rigidity theory and measure theory. This allows for entry points for students with varying backgrounds. The courses will be supplemented with guest lectures highlighting further connections to other fields.
Updated on Jul 21, 2017 10:13 AM PDT 
Summer Graduate School Soergel Bimodules
Organizers: LEAD Ben Elias (University of Oregon), Geordie Williamson (University of Sydney)We will give an introduction to categorical representation theory, focusing on the example of Soergel bimodules, which is a categorification of the IwahoriHecke algebra. We will give a comprehensive introduction to the "tool box" of modern (higher) representation theory: diagrammatics, homotopy categories, categorical diagonalization, module categories, Drinfeld center, algebraic Hodge theory.
Updated on Jul 10, 2017 01:18 PM PDT 
MSRIUP MSRIUP 2017: Solving Systems of Polynomial Equations
Organizers: LEAD Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Mercedes Franco (Queensborough Community College (CUNY)), Herbert Medina (University of Portland), J. Maurice Rojas (Texas A & M University), Suzanne Weekes (SIAM  Society of Industrial and Applied Mathematics)The MSRIUP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.In 2017, MSRIUP will focus on Solving Systems of Polynomial Equations, a topic at the heart of almost every computational problem in the physical and life sciences. We will pay special attention to complexity issues, highlighting connections with tropical geometry, number theory, and the P vs. NP problem. The research program will be led by Prof. J. Maurice Rojas of Texas A&M University.Students who have had a linear algebra course and a course in which they have had to write proofs are eligible to apply. Due to funding restrictions, only U.S. citizens and permanent residents may apply regardless of funding. Members of underrepresented groups are especially encouraged to apply.Updated on Jul 22, 2020 02:56 PM PDT 
Summer Graduate School Subfactors: planar algebras, quantum symmetries, and random matrices
Organizers: LEAD Scott Morrison (Australian National University), Emily Peters (Loyola University), Noah Snyder (Indiana University)Subfactor theory is a subject from operator algebras, with many surprising connections to other areas of mathematics. This summer school will be devoted to understanding the representation theory of subfactors, with a particular emphasis on connections to quantum symmetries, fusion categories, planar algebras, and random matrices
Updated on Jun 20, 2017 03:34 PM PDT 
Workshop Career in Academia
Organizers: Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), Estelle Basor (AIM  American Institute of Mathematics), David Farmer (AIM  American Institute of Mathematics), Sally Koutsoliotas (Bucknell University)This workshop will focus on preparing each participant for a successful career as a mathematician at a college or university. Beginning with the hiring process, a thorough discussion of the various elements of the application packet will take place in the context of each participant's materials. Working individually with experienced faculty, participants will review and refine their cover letters, C.V., research, and teaching statements. This will be followed by activities related to the interview. The primary goals of the workshop are to develop an understanding of the hiring process from the institutions' perspective, to refine the application packet, to learn what to expect during the interview process (including the job talk), and to prepare for negotiating salary and startup packages.
Additional time will be spent on aspects of the pretenure years including the development of a research program, writing grant proposals, and mentoring research students. The threeday workshop will consist of oneonone work with experienced mentors, small group discussions, critique of written materials, plenary sessions, and time for individual work and consultation.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Commutative Algebra and Related Topics
Organizers: Shinobu Hikami (Okinawa Institute of Science and Technology), LEAD Shihoko Ishii (Tsinghua University), Kazuhiko Kurano (Meiji University), Kenichi Yoshida (Nihon University)The purpose of the school will be to introduce graduate students to foundational results in commutative algebra, with particular emphasis of the diversity of the related topics with commutative algebra. Some of these topics are developing remarkably in this decade and through learning those subjects the graduate students will be stimulated toward future research.
Updated on Jun 21, 2017 04:53 PM PDT 
Workshop Critical Issues in Mathematics Education 2017: Observing for Access, Power, and Participation in Mathematics Classrooms as a Strategy to Improve Mathematics Teaching and Learning
Organizers: Michael Driskill (Math for America ), Esther Enright (Boise State University), Rochelle Gutierrez (University of Illinois), LEAD Jodie Novak (University of Northern Colorado), LEAD Miriam Sherin (Northwestern University), Joi Spencer (University of San Diego), Elizabeth van Es (University of California, Irvine)Success rates in mathematics as well as recruitment and retention rates in the mathematics pipeline are low at all education levels and are, across predictable demographics, disproportionately low for students who are women, Latin@, Black, American Indian, recent immigrants, emergent bilinguals/multilinguals, and poor. Efforts to address these low rates often focus on programmatic solutions such as creating mentoring or bridge programs to address perceived deficiencies. While these programs achieve some success, evidence suggests that they may not substantially improve students’ subsequent success in mathematics or meaningfully address the ways that students experience mathematics instruction.
The 2017 CIME workshop will focus on observations of mathematics classrooms through the lens of equity. Specifically, we will use observation as a tool for understanding and improving imbalances of access, participation, and power in mathematics teaching and learning. In doing so, we seek to better understand students’ experiences in mathematics classrooms in order to improve academic success, recruitment and retention, and meaningful experiences for historically marginalized populations.
Five questions structure the highly interactive design of the workshop:
 What does it mean to create an equitable classroom environment? How can the structure of classroom interactions lead to imbalances of access, identity, and power in mathematics teaching and learning? How can such structures be rebuilt to better serve all students?
 How might observations of mathematics instruction help us to identify power dynamics in classrooms? What language is helpful to describe interactions in mathematics classrooms? What might we learn from observations about how culture and identity are developed for some students but not others? What do classroom observations reveal about how instruction supports or discourages engagement in mathematics for students of different backgrounds?
 What does it mean to observe interactions in a mathematics classroom with an eye towards equity? What language is helpful to describe interactions in mathematics classrooms? How do we observe and describe interactions among students, between students and mathematics, between students and instructors, and between students and resources (i.e., textbooks, computers, chalkboards, manipulatives)?
 What professional experiences can support mathematics instructors to learn how to observe for, describe, interpret, and productively address interactions in the mathematics classroom from the lens of equity? What professional experiences can support mathematics instructors to increase the number of equitable interactions and decrease the number of inequitable ones in their classrooms?
 What measures might be useful in tracking our progress in learning to see, describe, interpret, and productively address (in)equitable interactions in mathematics classrooms? What measures and tools might be useful in tracking the impacts on instruction and student learning? How might we develop infrastructure to help with this work (video library, faculty resources, etc.)?
Updated on May 06, 2017 01:18 AM PDT 
Workshop Academic Sponsors Day
Updated on May 06, 2017 01:18 AM PDT 
Workshop Circle on the Road
Organizers: Selin Kalayciglu (The Center for Mathematical Talent), Berna Ok (The Center for Mathematical Talent), LEAD Diana White (MSRI  Mathematical Sciences Research Institute), Brandy Wiegers (Central Washington University)Bringing together new and experienced leaders of Math Circles and other similar outreach programs, this year’s Circle on the Road will include discussions, presentations, and opportunities to facilitate different mathematical problems. In addition, some informal STEM education researchers will join us to further our research and evaluation efforts.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Math Circle  Mentorship and Partnership Program
Organizers: Diana White (MSRI  Mathematical Sciences Research Institute), Brandy Wiegers (Central Washington University)Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Chip Firing and Tropical Curves
Organizers: LEAD Matthew Baker (Georgia Institute of Technology), David Jensen (University of Kentucky), Sam Payne (University of Texas, Austin)Tropical geometry uses a combination of techniques from algebraic geometry, combinatorics, and convex polyhedral geometry to study degenerations of algebraic varieties; the simplest tropical objects are tropical curves, which one can think of as "shadows" of algebraic curves. Linear equivalence of divisors on an abstract tropical curve is determined by a simple but rich combinatorial process called "chip firing", which was discovered independently in the discrete setting by physicists and graph theorists. From a pedagogical point of view, one can view tropical curves as a combinatorial model for the highly analogous but more abstract theory of algebraic curves, but there is in fact much more to the story than this: one can use tropical curves and chip firing to prove theorems in algebraic geometry and number theory. This field is relatively new, so participants will have the opportunity to start from scratch and still get a glimpse of the cutting edge in this active research area.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Electronic Structure Theory
Organizers: LEAD Lin Lin (University of California, Berkeley), Jianfeng Lu (Duke University), James Sethian (University of California, Berkeley)Ab initio or first principle electronic structure theories, particularly represented by KohnSham density functional theory (KSDFT), have been developed into workhorse tools with a wide range of scientific applications in chemistry, physics, materials science, biology etc. What is needed are new techniques that greatly extend the applicability and versatility of these approaches. At the core, many of the challenges that need to be addressed are essentially mathematical. The purpose of the workshop is to provide graduate students a selfcontained introduction to electronic structure theory, with particular emphasis on frontier topics in aspects of applied analysis and numerical methods.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School An Introduction to Character Theory and the McKay Conjecture
Organizers: Robert Guralnick (University of Southern California), Pham Tiep (Rutgers University)Character Theory of Finite Groups provides one of the most powerful tools to study groups. In this course we will give a gentle introduction to basic results in the Character Theory, as well as some of the main conjectures in Group Representation Theory, with particular emphasis on the McKay Conjecture.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Mixed Integer Nonlinear Programming: Theory, algorithms and applications
Organizers: Francisco Castro (University of Sevilla), Elena Fernandez (Polytechnical University of Cataluña (Barcelona) ), Justo Puerto (University of Sevilla)This school is oriented to the presentation of theory, algorithms and applications for the solution of mixed integer nonlinear problems (MINLP). This type of problems appears in numerous application areas where the modelization of nonlinear phenomena with logical constraints is important; we must remember here the memorable phrase “the world is nonlinear”. Nowadays the theoretical aspects of this area are spread in a number of recent papers which makes it difficult, for nonspecialist, to have a solid background of the existing results and new advances in the field. This school aims to organize and present this material in an organized way. Moreover, it also pursues to link theory with actual applications. In particular, remarkable applications can be found in air traffic control agencies, the air companies, the electric power generation companies, the chemical complex units, the analysis of financial products usually associated with risk dealing and in the algorithms in the statistical field and artificial intelligence as for instance artificial neural networks, or supporting vector machines, among many others.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Harmonic Analysis and Elliptic Equations on real Euclidean Spaces and on Rough Sets
Organizers: LEAD Steven Hofmann (University of Missouri), Jose Maria Martell (Instituto de Ciencias Matematicas (ICMAT))The goal of the workshop is to present harmonic analysis techniques in $R^n$ (the ``flat" setting), and then to show how those techniques extend to much rougher settings, with application to the theory of elliptic equations. Thus, the subject matter of the workshop will introduce the students to an active, current research area: the interface between harmonic analysis, elliptic PDE, and geometric measure theory.
Updated on May 06, 2017 01:18 AM PDT 
MSRIUP MSRIUP 2016: Sandpile Groups
Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Mercedes Franco (Queensborough Community College (CUNY)), Luis David Garcia Puente (Colorado College), Herbert Medina (University of Portland), LEAD Suzanne Weekes (SIAM  Society of Industrial and Applied Mathematics)The MSRIUP summer program is designed for undergraduate students who have completed two years of universitylevel mathematics courses and would like to conduct research in the mathematical sciences. Due to funding restrictions, only U.S. citizens and permanent residents are eligible to apply and the program cannot accept foreign students regardless of funding. The academic portion of the 2016 program will be led by Prof. Luis GarciaPuente of Sam Houston State University.
Updated on Jul 22, 2020 03:12 PM PDT 
Summer Graduate School Seminaire de Mathematiques Superieures 2016: Dynamics of Biological Systems
Organizers: Thomas Hillen (University of Alberta), Mark Lewis (University of Alberta), Yingfei Yi (University of Alberta)The purpose of this summer school is to focus on the interplay of dynamical and biological systems, developing the rich connectionbetween science and mathematics that has been so successful to date. Our focus will be on understanding the mathematical structure of dynamical systems that come from biological problems, and then relating the mathematical structures back to the biology to provide scientific insight. We will focus on five key areas: complex bionetworks, multi scale biological dynamics, biological waves, nonlinear dynamics of pattern formation, and disease dynamics. For each of the five key areas, we will invite 23 world leaders who are also excellent communicators to deliver a series of 24 onehour lectures. We expect an average of eight hours of lecture per subject area, spread over approximately two weeks.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Bay Area Discrete (BAD) Math Day 32
Organizers: Federico Ardila (San Francisco State University), Ralucca Gera (Naval Postgraduate School), Elizabeth Gross (San Jose State University), Angela Hicks (Stanford University), Carol Meyers (Lawrence Livermore National Laboratory), Rick Scott (University of Santa Clara), Erik Slivenken (University of California, Davis), Ellen Veomett (Saint Mary's College of California), Yan Zhang (University of California, Berkeley)Bay Area Discrete Math Days are oneday meetings aimed at facilitating communication between researchers and graduate students of discrete mathematics around the San Francisco Bay Area.These days happen semiannually and strive to create an informal atmosphere to talk about discrete mathematics. The term "discrete mathematics" is chosen to include at least the following topics: Algebraic and Enumerative Combinatorics, Discrete Geometry, Graph Theory, Coding and Design Theory, Combinatorial Aspects of Computational Algebra and Geometry, Combinatorial Optimization, Probabilistic Combinatorics, and Combinatorics in Mathematical Physics
Updated on May 06, 2017 01:18 AM PDT 
Workshop Critical Issues in Mathematics Education 2016: Observing, Evaluating and Improving Mathematics Teaching from the Early Grades through the University
Organizers: Hyman Bass (University of Michigan), Michael Driskill (Math for America ), LEAD Mark Hoover (University of Michigan), LEAD Deborah Hughes Hallett (University of Arizona), Danny Martin (University of Illinois at Chicago), Miriam Sherin (Northwestern University)The 2016 CIME workshop focuses directly on the teaching of mathematics at the university and precollege levels. Teaching is not easy to examine in disciplined ways because it is so familiar and seems so obvious. Although teaching shapes students’ opportunities to learn, what teachers are actually doing is difficult to observe and describe. This impedes work on improving teaching.
This workshop will offer the opportunity to study and talk closely about mathematics teaching through close observation and discussion of video tapes in a setting that will bring together professionals with a range of perspectives, knowledge, experience, and orientations. The goal of the workshop is to develop language and methods for describing, analyzing and evaluating what can be seen in the classroom, with the ultimate goal of helping us shape and improve teaching — our own and more broadly.
Four questions structure the highly interactive design of the workshop: What skills are needed for observing teaching in ways that inform improvement efforts? What is involved in observing teaching? What is the teacher saying and doing? What are students saying and doing? What is the mathematics at play? What else is happening? And what do these imply for teaching?
 How can the practice and use of observation be structured in order to improve mathematics teaching? What approaches are available? What are their strengths and weaknesses?
 Observationbased assessment of teaching: Why, what, and how? What are the risks?
 How can we develop and sustain a crossprofessional community that observes and evaluates teaching in such a way that different communities communicate with and learn from each other to support a cycle of improvement in the teaching of mathematics at all levels?
The workshop will provide a library of videos of mathematics teaching for study. In addition, participants are encouraged to submit a short video clip of their own teaching, together with a brief background commentary. These videos will provide a central text for our collective work on discussing and assessing mathematics teaching.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Modern Math Workshop 2015
Organizers: LEAD Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), Helen Chamberlin (Ohio State University), Ricardo Cortez (Tulane University), Sujit Ghosh (North Carolina State University), Dagan Karp (Harvey Mudd College), Anne Pfister (MSRI  Mathematical Sciences Research Institute), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Ivelisse M. Rubio (University of Puerto Rico), Mariel Vazquez (University of California, Davis), Talithia Williams (Harvey Mudd College)As part of the Mathematical Sciences Collaborative Diversity Initiatives, nine mathematics institutes are pleased to host their annual SACNAS preconference event, the 2015 Modern Math Workshop (MMW). The Modern Math Workshop is intended to encourage minority undergraduates to pursue careers in the mathematical sciences and to assist undergraduates, graduate students and recent PhD’s in building their research networks.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Incompressible Fluid Flows at High Reynolds Number
Organizers: Jacob Bedrossian (University of Maryland), LEAD Vlad Vicol (New York University, Courant Institute)The purpose of this two week workshop is to introduce graduate students to stateoftheart methods and results in mathematical fluid dynamics. In the first week, we will discuss the mathematical foundations and modern analysis aspects of the NavierStokes and Euler equations. In the second week, we will run two courses concurrently on the topics of inviscid limits and hydrodynamic stability. Specifically, one course will focus on boundary layers in high Reynolds number flows and the Prandtl equations while the other will focus on mixing and connections to turbulence. Through the lectures and associated problem sessions, the students will learn about a number of new analysis tools and principles of fluid mechanics that are not always taught in a graduate school curriculum.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Gaps between Primes and Analytic Number Theory
Organizers: Dimitris Koukoulopoulos (Université de Montréal), LEAD Emmanuel Kowalski (ETH Zurich), James Maynard (University of Oxford), Kannan Soundararajan (Stanford University)These courses will give students a full overview of the results of Zhang and Maynard on gaps between primes, and will provide them will a clear understanding of the tools involved. This will make accessible a significant part of modern analytic number theory. The lecturers will also make sure to include, within their course, examples and discussions going further than is strictly required to understand the proofs of Zhang and Maynard, e.g., in the direction of automorphic forms and the Riemann Hypothesis over finite fields.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Berkeley summer course in mining and modeling of neuroscience data
Organizers: Ingrid Daubechies (Duke University), Bruno Olshausen (University of California, Berkeley), Christos Papadimitriou (University of California, Berkeley), Fritz Sommer (University of California, Berkeley), LEAD Jeff Teeters (University of California, Berkeley)This course is for students and researchers with backgrounds in mathematics and computational sciences who are
interested in applying their skills toward problems in neuroscience. It will introduce the major open questions of
neuroscience and teach stateof–theart techniques for analyzing and modeling neuroscience data sets. The course is designed for students at the graduate level and researchers with background in a quantitative field such as
engineering, mathematics, physics or computer science who may or may not have a specific neuroscience
background. The goal of this summer course is to help researchers find new exciting research areas and at the same time to strengthen quantitative expertise in the field of neuroscience. The course is sponsored by the National Science Foundation from a grant supporting activities at the data sharing repository CRCNS.org, the Helen Wills
Neuroscience Institute, the Simons Institute for the Theory of Computing and the Mathematical Science Research
Institute.Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Mathematical Topics in Systems Biology
Organizers: LEAD Steven Altschuler (University of California, San Francisco), Lani Wu (University of California, San Francisco)This Summer Graduate School will introduce mathematics graduate students to the rapidly emerging area of systems biology. In particular, we will focus on the design and emergent behaviors of molecular networks used by cells to interpret their environments and create robust temporalspatial behaviors. This will be a very handson workshop with students working alone and in teams to program and present key ideas.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School NIMS Summer School on Random Matrix Theory
Organizers: LEAD Jinho Baik (University of Michigan)This summer graduate school will take place at the National Institute for Mathematical Sciences in Daejeon, South Korea. The purpose of this summer school is to introduce some of the basic ideas and methods of random matrix theory to graduate students. In particular there will be three lecture series on random matrix theory from three different perspectives: from the view points of the integrable structures, the moment method, and the Stieltjes transorm technique. In addition to the lectures, there will be discussion sessions, and the students will also have plenty of time to interact with the lecturers and with other students.
Please note that accepted students will be provided up to $1700 in travel reimbursement, in addition to meals and accommodation.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Seminaire de Mathematiques Superieures 2015: Geometric and Computational Spectral Theory
Organizers: Alexandre Girouard (Laval University), Dmitry Jakobson (McGill University), Michael Levitin (University of Reading), Nilima Nigam (Simon Fraser University), Iosif Polterovich (Université de Montréal), Frederic Rochon (Université du Québec à Montréal)The lectures will focus on the following four topics: geometry of eigenvalues, geometry of eigenfunctions, spectral theory on manifolds with singularities and computational spectral theory. There has been a number of remarkable recent developments in these closely related fields. The goal of the school is to shed light on different facets of modern spectral theory and to provide a unique opportunity for graduate students and young researchers to get a “big picture” of this rapidly evolving area of mathematics. A particularly novel aspect of the school is the emphasis on the interactions between spectral geometry and computational spectral theory.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Geometric Group Theory
Organizers: LEAD John Mackay (University of Bristol), Anne Thomas (University of Sydney), Kevin Wortman (University of Utah)The aim of this workshop is to introduce graduate students to some specific core topics which will be under study at the upcoming MSRI program on Geometric Group Theory (GGT) in 2016. GGT encompasses a wide range of topics. The four minicourse topics have been chosen because they are central themes in GGT and in the upcoming MSRI program. Moreover, each topic is accessible to students with a range of backgrounds: the basic definitions are straightforward, with many simple and illuminating examples to work through, yet lead through to important questions in current research.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School CRMPIMS Summer School in Probability
Organizers: LEAD Louigi AddarioBerry (McGill University), LouisPierre Arguin (University of Montreal), Alexander Fribergh (University of Montreal), Lea Popovic (Concordia University)The 2015 CRMPIMS Summer School in Probability will take place in Montreal, Canada, from June 15July 11, 2015. The school is built around two principal 24hour lecture courses, which will be delivered by Alice Guionnet (random matrices, free probability and the enumeration of maps) and Remco van der Hofstad (highdimensional percolation and random graphs). There will additionally be minicourses by Louigi AddarioBerry (random minimum spanning trees), Shankar Bhamidi (dynamic random network models) and Jonathan Mattingly (stabilization by noise). Some time is reserved for participants to present their own work.
Updated on May 06, 2017 01:18 AM PDT 
MSRIUP MSRIUP 2015: Geometric Combinatorics Motivated by the Social Sciences
Organizers: Federico Ardila (San Francisco State University), LEAD Duane Cooper (Morehouse College), Herbert Medina (University of Portland), Ivelisse M. Rubio (University of Puerto Rico), Francis Su (Harvey Mudd College), Suzanne Weekes (SIAM  Society of Industrial and Applied Mathematics)The MSRIUP summer program is designed for undergraduate students who have completed two years of universitylevel mathematics courses and would like to conduct research in the mathematical sciences. Due to funding restrictions, only U.S. citizens and permanent residents are eligible to apply and the program cannot accept foreign students regardless of funding. The academic portion of the 2015 program will be led by Prof. Francis Su from Harvey Mudd College.
Updated on Jul 22, 2020 03:12 PM PDT 
Workshop Partnerships: a Workshop on Collaborations between the NSF/MPS and Private Foundations
Organizers: Cynthia Atherton (HeisingSimons Foundation), Paulette Clancy (Cornell University), LEAD David Eisenbud (University of California, Berkeley), Thomas Everhart (California Institute of Technology), Caty Pilachowski (Indiana University), Robert Shelton (Research Corporation for Science Advancement), Yuri Tschinkel (New York University, Courant Institute)The National Science Foundation (NSF) and nonprofit organizations each provide critical support to the U.S. basic research enterprise in the mathematical and physical sciences. While the missions of these funders differ, many of their goals align and the grantee communities have significant overlap. With the ultimate aim of helping to advance the scientific frontier in the most effective way, we propose to hold a workshop to examine partnerships between the Directorate of Mathematical and Physical Sciences (MPS) at NSF and nonprofit funders in MPSrelated disciplines to
• understand different models of collaboration (the “how”);
• understand different motivations for collaboration (the “why”); and
• develop opportunities for future communication and/or collaboration.Updated on May 06, 2017 01:18 AM PDT 
Workshop Critical Issues in Mathematics Education 2015: Developmental Mathematics: For whom? Toward what ends?
Organizers: Duane Cooper (Morehouse College), Mark Hoover (University of Michigan), LEAD Robert Megginson (University of Michigan), Richard Sgarlotti (Bay College), Katherine Stevenson (California State University, Northridge)This workshop will address the critical issue of developmental mathematics at two and fouryear colleges and universities and the broader dynamic of mathematics remediation that occurs at all levels. It will engage mathematicians, K12 teachers, mathematics educators, and administrators in a conversation about the goals of developmental mathematics and the contributions that our different professional communities make to this work. Key questions that will be addressed are:
1. How do we teach content in ways that acknowledge and leverage each student's prior learning experiences? In particular, how do we take advantage of a student's maturity while refining his or her learning habits where necessary?
2. How can developmental mathematics instruction move students through mathematics which must be relearned while simultaneously gaining momentum on more advanced mathematics (including the development of mathematical practices needed for meaningful mathematical work)?
3. What are strategies for supporting the needs of the wide range of students in developmental mathematics programsthose developing mathematical skills for life in general as well as those developing the foundation necessary to proceed towards a STEM major? How can we successfully address equity issues raised for students from groups underrepresented in STEM fields? How can developmental mathematics instruction blend synchronous and asynchronous instruction to achieve maximal efficiency and impact?
4. What is the proper balance between addressing the needs of the wide range of students mentioned in the preceding point and keeping instruction and course offerings concise?
5. What are the characteristics, training, and practices of a successful developmental mathematics teacher?
6. What support services enhance the success of a developmental mathematics program?
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Geometry and Analysis
Organizers: HansJoachim Hein (Imperial College, London), LEAD Aaron Naber (Northwestern University)Geometric and complex analysis is the application of tools from analysis to study questions from geometry and topology. This two week summer course will provide graduate students with the necessary background to begin studies in the area. The first week will consist of introductory courses on geometric analysis, complex analysis, and Riemann surfaces. The second week will consist of more advanced courses on the regularity theory of Einstein manifolds, KahlerEinstein manifolds, and the analysis of Riemann surfaces.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Stochastic Partial Differential Equations
Organizers: Yuri Bakhtin (New York University, Courant Institute), LEAD Ivan Corwin (Columbia University), James Nolen (Duke University)Stochastic Partial Differential Equations (SPDEs) serve as fundamental models of physical systems subject to random inputs, interactions or environments. It is a particular challenge to develop tools to construct solutions, prove robustness of approximation schemes, and study properties like ergodicity and fluctuation statistics for a wide variety of SPDEs.
The purpose of this two week workshop is to educate graduate students on the stateoftheart methods and results in SPDEs. The three courses which will be run simultaneously will highlight different (though related) aspects of this area including (1) Fluctuation theory of PDEs with random coefficients (2) Ergodic theory of SPDEs and (3) Exact solvability of SPDEsUpdated on May 01, 2019 02:31 PM PDT 
Summer Graduate School Algebraic Topology
Organizers: LEAD Jose CantareroLopez (Centro de Investigación en Matemáticas), LEAD Michael Hill (University of California, Los Angeles)Modern algebraic topology is a broad and vibrant field which has seen recent progress on classical problems as well as exciting new interactions with applied mathematics. This summer school will consist of a series of lecture by experts on major research directions, including several lectures on applied algebraic topology. Participants will also have the opportunity to have guided interaction with the seminal texts in the field, reading and speaking about the foundational papers.
Videos of selected lectures may be found here.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School IAS/PCMI 2014: Mathematics and Materials
Organizers: Mark Bowick (Syracuse University), David Kinderlehrer (Carnegie Mellon University), Govind Menon (Brown University), Charles Radin (University of Texas)The program in 2014 will bring together a diverse group of mathematicians and scientists with interests in fundamental questions in mathematics and the behavior of materials. The meeting addresses several themes including computational investigations of material properties, the emergence of long range order in materials and selfassembly, the geometry of soft condensed matter and the calculus of variations, phase transitions and statistical mechanics. The program will cover several topics in discrete and differential geometry that are motivated by questions in materials science. Many central topics, such as the geometry of packings, problems in the calculus of variations and phase transitions, will be discussed from the complementary points of view of mathematicians and physicists.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Seminaire de Mathematiques Superieures 2014: Counting Arithmetic Objects
Organizers: Henri Darmon (McGill University), Andrew Granville (Université de Montréal), Benedict Gross (Harvard University)Updated on May 06, 2017 01:18 AM PDT 
MSRIUP MSRIUP 2014: Arithmetic Aspects of Elementary Functions
Organizers: Duane Cooper (Morehouse College), Ricardo Cortez (Tulane University), LEAD Herbert Medina (University of Portland), Victor H. Moll (Tulane University), Ivelisse M. Rubio (University of Puerto Rico), Suzanne Weekes (SIAM  Society of Industrial and Applied Mathematics)The MSRIUP summer program is designed for undergraduate students who have completed two years of universitylevel mathematics courses and would like to conduct research in the mathematical sciences. Due to funding restrictions, only U.S. citizens and permanent residents are eligible to apply and the program cannot accept foreign students regardless of funding. The academic portion of the 2014 program will be led by Dr. Victor Moll from Tulane University.
Updated on Jul 22, 2020 03:12 PM PDT 
Summer Graduate School Dispersive Partial Differential Equations
Organizers: Natasa Pavlovic (University of Texas, Austin), Nikolaos Tzirakis (University of Illinois at UrbanaChampaign)The purpose of the workshop is to introduce graduate students to the recent developments in the area of dispersive partial differential equations (PDE).
Dispersive equations have received a great deal of attention from mathematicians because of their applications to nonlinear optics, water wave theory and plasma physics. We will outline the basic tools of the theory that were developed with the help of multilinear Harmonic Analysis techniques. The exposition will be as selfcontained as possible.
Updated on May 01, 2019 02:26 PM PDT 
Workshop Critical Issues in Mathematics Education 2014: The role of the mathematics department in the mathematical preparation of teachers
Organizers: Deborah Ball (University of Michigan), Solomon Friedberg (Boston College), LEAD Jim Lewis (University of Nebraska), Despina Stylianou (City College, CUNY), Peter Trapa (University of Utah), HungHsi Wu (University of California, Berkeley), Darryl Yong (Harvey Mudd College)The 2014 CIME workshop will focus on the role played by mathematics departments in preparing future teachers. As part of this focus, the workshop will consider two broad questions: What mathematics should teachers know, and how should they come to know this mathematics?
The Conference Board of the Mathematical Sciences publication, The Mathematical Education of Teachers II, recommends that, at institutions that prepare teachers, teacher education should be “an important part of a mathematics department’s mission” (p.19). Certainly, at some universities, mathematicians are significantly involved in the mathematical experiences of students who are planning become teachers. But there are many other departments where this is not true. Future mathematics teachers are enrolled in the department’s mathematics classes, but no one is attending to the fact that this is where they are developing mathematical knowledge and (from watching their instructors) ideas about how teach mathematics. This role – whether deliberate or latent –– is vitally important for the mathematical preparation of beginning teachers.
The CIME workshop has three core aims: (A) to acquaint mathematicians with basic facts about teacher education and how teacher education intersects with the math department even when no one is taking special note of the department’s role; (B) to explore a set of key questions and best practices central to taking advantage of the role that mathematics departments do – or could – play in the mathematical preparation of teachers:
 What is known about effective mathematical preparation of teachers, including curriculum, instructional approaches, and assessments?
 What supports do mathematicians and mathematics departments need to carry out this important role effectively? What are examples of successful models and what evidence exists about their effects?
 What are some of the persistent problems or challenges and what are promising examples of addressing these?
and (C) to identify possible action steps to provide more collective capacity for math departments to contribute to teachers’ mathematical education.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Mathematical General Relativity in Cortona, Italy
Organizers: Justin Corvino (Lafayette College), Pengzi Miao (University of Miami), Giorgio Patrizio (Istituto Nazionale di Alta Matematica "Francesco Severi" (INdAM))In cooperation with INdAM (Istituto Nazionale di Alta Matematica) and the CMI (Clay Mathematical Institute), MSRI will sponsor a summer graduate workshop on Mathematical General Relativity in Cortona during the summer of 2013; the school will reprise the very successful school of Mathematical General Relativity held at MSRI in 2012.
Mathematical general relativity is the study of mathematical problems related to Einstein's theory of gravitation. There are interesting connections between the physical theory and problems in differential geometry and partial differential equations.
The purpose of the summer school is to introduce graduate students to some fundamental aspects of mathematical general relativity, with particular emphasis on the geometry of the Einstein constraint equations and the Positive Mass Theorem. These topics will comprise a component of the upcoming semester program at MSRI in Fall 2013.
There will be minicourses, as well as several research lectures.
Updated on May 06, 2017 01:18 AM PDT 
Mathematics Professional Development Institute Mathematics Professional Development Institute 2013
This is a threeweek institute on the mathematics of grades 68 in direct response to the recent adoption of the Common Core Mathematics Standards (CCMS) by California.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Bay Area Circle for Teachers (BACT) Summer Workshop 2013
Organizers: LEAD Sage (Ann) Moore (Mills College)Updated on May 06, 2017 01:18 AM PDT 
MSRIUP MSRIUP 2013: Algebraic Combinatorics
Organizers: Duane Cooper (Morehouse College), Ricardo Cortez (Tulane University), Herbert Medina (University of Portland), Rosa Orellana (Dartmouth College), LEAD Ivelisse M. Rubio (University of Puerto Rico), Suzanne Weekes (SIAM  Society of Industrial and Applied Mathematics)The MSRIUP summer program is designed for undergraduate students who have completed two years of universitylevel mathematics courses and would like to conduct research in the mathematical sciences. Due to funding restrictions, only U.S. citizens and permanent residents are eligible to apply and the program cannot accept foreign students regardless of funding. The academic portion of the 2013 program will be led by Dr. Rosa Orellana from Dartmouth College.
Updated on Jul 22, 2020 03:13 PM PDT 
Julia Robinson Mathematics Festival Julia Robinson Mathematics Festival at Stanford, 5/11/2013
Updated on May 13, 2013 11:00 PM PDT 
Workshop Critical Issues in Mathematics Education 2013: Assessment of Mathematical Proficiencies in the Age of the Common Core
Organizers: Mark Thames* (University of Michigan), Kristin Umland* (University of New Mexico), Noah Heller (Math for America) and Alan Schoenfeld (University of California, Berkeley)This workshop will explore the fundamental problems of trying to assess students' mathematical proficiency, seeking to take a more comprehensive perspective on what it is to learn, know, and use mathematics. The advent of the Common Core State Standards both increases the demand and broadens the conception of what it is to be mathematically skillful, and opens new opportunities and challenges to improving our ability to assess what students understand and can do.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Circle on the Road Spring 2013
Organizers: Amanda Serenevy (Riverbend Community Math Center), Dave Auckly (Kansas State University), Jonathan Farley (Research Institute for Mathematics), Hector Rosario (University of Puerto Rico, Mayaguez), Mark Saul (John Templeton Foundation), Diana White (University of Colorado Denver)This workshop will bring together new and experienced leaders of math circles for students and teachers. We welcome anyone who is interested in learning more about math circles, especially teachers. Workshop activities will include discussions, presentations, and a mathematics festival.
Participants will begin collaborating before the workshop to develop sample math circle sessions that they will present during the festival. These activities will be collaboratively evaluated and refined during the workshop.Updated on May 06, 2017 01:18 AM PDT 
Workshop UC Berkeley Julia Robinson Mathematics Festival
Updated on May 06, 2017 01:18 AM PDT 
Workshop Bay Area Circle for Teachers (BACT) Winter Workshop 2013
Organizers: Sage Moore, BACT DirectorUpdated on May 06, 2017 01:18 AM PDT 
Mathematics Professional Development Institute Mathematics Professional Development Institute 2012
This is a threeweek institute on the mathematics of grades 68 in direct response to the recent adoption of the Common Core Mathematics Standards (CCMS) by California.
Updated on May 07, 2013 11:15 AM PDT 
MSRIUP MSRIUP 2012: Enumerative Combinatorics
Organizers: Matthias Beck (San Francisco State University), Duane Cooper (Morehouse College), LEAD Ricardo Cortez (Tulane University), Herbert Medina (University of Portland), Ivelisse M. Rubio (University of Puerto Rico), Suzanne Weekes (SIAM  Society of Industrial and Applied Mathematics)Updated on Jul 22, 2020 03:13 PM PDT 
Workshop Circle on the Road Spring 2012
Organizers: Dave Auckly, Robert Sachs, Amanda Serenevy, Dan UllmanThis workshop will bring together new and experienced leaders of math circles for students and teachers.
Workshop activities will include discussions, presentations, and a mathematics festival to be held outside of the MathAlive! exhibit that will be in the Smithsonian Institution.
Participants will begin collaborating before the workshop to develop sample math circle sessions that they will present during the festival. These activities will be collaboratively evaluated and refined during the workshop.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Critical Issues in Mathematics Education 2012: Teacher education in view of the Common Core
Organizers: Dave Auckly, Hyman Bass, Amy CohenCorwin, and William McCallumThe wide adoption of the Common Core State Standards for Mathematics (CCSSM) offers a helpful curricular coherence to the environment of teacher education. And so the CCSSM present both an opportunity and a challenge to teacher education. An opportunity because of the greater focus made possible. A challenge because not only of the ambitious level of the CCSSM, but also of the prominent role in them of Mathematical Practices. While most mathematicians will find these congenial, much needs to be done to make them meaningfully understood by teachers and teacher educators, and, still more, how to enact them as an organic aspect of instruction. The CIME workshop aims to gather and stimulate ideas for how to meet this opportunity and challenge.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Spring Opportunities
Organizers: David Auckly, Philip Kutzko, Trachette Jackson, and Robert MegginsonThis first workshop in a series addresses the professional advancement of underrepresented minorities in the mathematical sciences. It will include an introduction to mathematics represented in the MSRI research programs aimed at faculty in minority serving and primarily undergraduate institutions. Anyone who will be seeking employment in mathematics within the next couple of years would benefit from attending this workshop.
Updated on May 06, 2017 01:18 AM PDT 
MSRIUP MSRIUP 2011: Mathematical Finance
Organizers: Marcel Blais (Worcester Polytechnic Institute), Duane Cooper (Morehouse College), Ricardo Cortez (Tulane University), Herbert Medina (University of Portland), Ivelisse M. Rubio (University of Puerto Rico), LEAD Suzanne Weekes (SIAM  Society of Industrial and Applied Mathematics)The MSRIUP summer program is designed for undergraduate students who have completed two years of universitylevel mathematics courses and would like to conduct research in the mathematical sciences. Due to funding restrictions, only U.S. citizens and permanent residents are eligible to apply and the program cannot accept foreign students regardless of funding.
Updated on Jul 22, 2020 03:13 PM PDT 
Workshop Bay Area Circle for Teachers Summer Workshop
Organizers: David Auckly*The BACT Summer Workshop supports teachers in their development of problem solving skills as well as supporting the incorporation of problem solving into their teaching curriculum. During the earlier part of the week teachers will gain experience with a variety of problem solving techniques such as symmetry, mathematical patterns, and parity. Subsequent sessions will focus on particular topics such as geometry, sequences, counting, and number theory.
Note: for 2011 Workshop there will be two parallel sessions: one for elementary teachers and one for secondary teachers.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Critical Issues in Mathematics Education 2011: Mathematical Education of Teachers
Organizers: Dave Auckly, Sybilla Beckmann (chair), Jim Lewis and William McCallumThis workshop will showcase materials and successful teacher education programs, examine the Common Core State Standards and its implications, and explore how mathematics education research can improve practice.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Circle on the Road Spring 2011
Organizers: Dave Auckly, Matthias Kawski, Jeff Morgan, Mark Saul, and Sam VanderveldeThis workshop will bring together people who have experience running math circles and teams of people who wish to start a math circle. The workshop will begin on Friday, with discussions and presentations related to math circles. On Saturday several sample math circle sessions will be offered, and the workshop will conclude on Sunday with more discussions and presentations.
Updated on May 06, 2017 01:18 AM PDT 
Summer Graduate School Algebraic, Geometric, and Combinatorial Methods for Optimization
Organizers: Matthias Köppe (University of California, Davis) and Jiawang Nie (University of California, San Diego)This workshop is intended to introduce to graduate students the main ideas of algebraic, geometric and combinatorial methods in global optimization. We emphasize the major developments in the past few years from two viewpoints. The first one is that of the interaction of semidefinite programming and real algebraic geometry and includes topics such as linear matrix inequalities, positive polynomials, and sums of squares. The second viewpoint is that of primal methods and generating function methods in integer linear and nonlinear optimization.
Updated on Jan 26, 2023 04:20 PM PST 
Mathematics Professional Development Institute Summer Institute for the Professional Development of Middle School Teachers on Algebra 2010 (Wu Summer Institute)
Organizers: HungHsi Wu (University of California, Berkeley)This is a fourteenday institute (July 6 to July 23, 2010) on algebra together with five Saturday sessions spread over the 20102011 school year. The main target is middle school teachers; preference will be given to teachers who attended the 2009 PreAlgebra Institute and teams from the same school or same district. However, high school teachers and upper elementary school teachers will also be considered. There is a limited number of seats, so get your application in as soon as possible.
Updated on May 02, 2013 10:30 PM PDT 
Workshop Critical Issues in Mathematics Education 2010: Reasoning and SenseMaking in the Math Curriculum
Organizers: Dave Auckly, Scott Baldridge, Deborah Loewenberg Ball, Aaron Bertram, Wade Ellis, Deborah Hughes Hallett, Gary Martin, and William McCallum (Chair)The National Council of Teachers of Mathematics has just released a new document, Focus in High School Mathematics: Reasoning and SenseMaking. The Council of Chief State School Officers and the National Governor’s Association have initiated a state led effort to produce Common Core State Standards, which they hope will move states toward national curricular coherence. The national scene is being transformed through stimulus money aimed at having states adopt common standards. This is a significant time for mathematicians to weigh in for coherence and a focus on thinking, understanding and sensemaking. For this reason MSRI will host the seventh Critical Issues in Mathematics Education Workshop on this topic. Themes of the workshop will include international comparisons, the role of a coherent national curriculum in the teaching of mathematics, and the ways in which technology can be used to support reasoning and sensemaking.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Circle on the Road
Organizers: Dave Auckly, Matthias Kawski, Omayra Ortega, Hugo Rossi and Mark SaulThis conference will bring together people who have experience running math circles with *teams* of people who wish to start a math circle. The workshop will begin on Saturday with a Math Festival for school children in the Phoenix area. The following two days will have panel discussions and presentations on various topics of interest to people who run or wish to run a math circle.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Bay Area Circle for Teachers Winter Workshop
Organizers: Brandy Wiegers*The Winter workshop supports teachers in their development of problem solving skills as well as sharing with them information about upcoming mathematical opportunities for students and teachers. This will be a great opportunity for teachers new to the Math Circle program and experienced Math Circle teachers.
Updated on May 06, 2017 01:18 AM PDT 
Mathematics Professional Development Institute Summer Institute for the Professional Development of Middle School Teachers on PreAlgebra (Wu Summer Institute)
Organizers: HungHsi Wu (University of California, Berkeley), Stefanie Hassan (Little Lake City School District), Winnie Gilbert (Hacienda La Puente Unified School District), and Sunil Koswatta (Harper College).Updated on May 02, 2013 10:31 PM PDT 
Workshop Bay Area Circle For Teachers 20092010
Organizers: Brandy WiegersThe aim of the Circle for Teachers is to equip educators with an effective problemsolving approach to teaching mathematics.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Critical Issues in Mathematics Education 2009: Teaching Undergraduates Mathematics
Organizers: William McCallum (The University of Arizona), Deborah Loewenberg Ball (University of Michigan), Rikki Blair (Lakeland Comminity College, Ohio), David Bressoud (Macalester College), Amy CohenCorwin (Rutgers University), Don Goldberg (El Camino College), Jim Lewis (University of Nebraska), Robert Megginson (University of Michigan), Bob Moses (The Algebra Project), James Donaldson (Howard University),Teaching Undergraduates Mathematics will be the sixth in a series of Critical Issues in Education workshops hosted by the Mathematical Sciences Research Institute (MSRI) in Berkeley, CA. Whereas previous workshops focused on K12 education and teacher education, this workshop will focus on undergraduate education.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Bay Area Circle for Teachers
Organizers: Tatiana Shubin (San Jose State University) and Joshua Zucker (Castilleja School)Updated on May 06, 2017 01:18 AM PDT 
Mathematics Professional Development Institute Mathematics Professional Development Institute (Wu Summer Institute)
Organizers: Dr. HungHsi Wu (UC Berkeley), Kay Kirman and Hana Huang (Miraloma Elementary School, SF), and Dr. Sunil Koswatta (Harper College)This threeweek course in elementary mathematics directly addresses the mathematics needed for teaching Number Sense in K7 classrooms. It develops whole numbers and fractions from the beginning, with an excursion into some elementary number theory about divisibility properties of whole numbers and the algorithm that yields the HCF of two numbers. Each day begins with mathematics lectures by a Berkeley mathematician and concludes with small group sessions guided by MPDI graduates.
Updated on May 02, 2013 10:31 PM PDT 
Workshop Critical Issues in Mathematics Education 2008: Teaching and Learning Algebra
Organizers: Al Cuoco, chair, (Center for Mathematics Education), Deborah Ball, ex officio (University of Michigan), Hyman Bass (University of Michigan), Herb Clemens (Ohio State University), James Fey (University of Maryland), Megan Franke (UCLA), Roger Howe (Yale University), Alan Schoenfeld (UC Berkeley), and Ed Silver (University of Michigan).For over two decades, the teaching and learning of algebra has been a focus of mathematics education at the precollege level. This workshop will examine issues in algebra education at two critical points in the continuum from elementary school to undergraduate studies: at the transitions from arithmetic to algebra and from high school to university. In addition, the workshop will involve participants in discussions about various ways to structure an algebra curriculum across the entire K12 curriculum.
Updated on May 06, 2017 01:18 AM PDT 
Workshop Critical Issues in Mathematics Education 2007: Teaching Teachers Mathematics
Organizers: Deborah Ball (Center for Proficiency in Education and the University of Michigan), Sybilla Beckmann (University of Georgia), Jim Lewis (University of Nebraska) Chair, Ruth Heaton (University of Nebraska), James Hiebert (University of Delaware), William McCallum (University of Arizona) and William Yslas Velez (University of Arizona).Building on the issues investigated in these previous workshops, this workshop will focus concretely on courses, programs and materials that aim to increase teachers’ mathematical knowledge for teaching. Both courses and programs that lead to initial certification and professional development of current teachers will be examined at the workshop. In addition, the workshop will examine efforts by colleges, universities, school districts, professional organizations and funding agencies to support people who teach these courses or lead these workshops.
Updated on May 06, 2017 01:18 AM PDT 
Workshop The Mathematical Knowledge for Teaching (K8): Why, What and How?
Organizers: Deborah Ball, Chair, (University of Michigan), Herb Clemens (Ohio State University), David Eisenbud (MSRI), Jim Lewis (University of Nebraska)Using Math to Teach Math (PDF 5.5MB) Second conference in the MSRI series "Critical Issues in Mathematics Education" This workshop will be held at Asilomar in Pacific Grove, California. The conference takes as a premise that improving students’ mathematics learning depends on improving mathematics teaching, for which teachers’ knowledge of mathematics is a key factor. It will bring together different groups for whom issues of teachers’ mathematical knowledge are of critical concern, and explore current perspectives, evidence, and programs. Three questions structure its highly interactive design: 1. Why should K8 teachers know mathematics? 2. What is the nature of the knowledge of mathematics needed for effective teaching? 3. What can mathematics departments and schools of education do to help teachers develop such knowledge? The conference will foster productive partnerships among research mathematicians, mathematics educators, educational researchers, teachers of school mathematics, and policymakers that will support them in their efforts. This conference is made possible by generous support from The National Science Foundation (www.nsf.gov), MfA Math for America(www.mathforamerica.org),Texas Instruments (www.ti.com). Noyce Foundation, and Center for Proficiency in Teaching Mathematics
Updated on May 06, 2017 01:18 AM PDT

Past Educational Events 