-
Model Theory, Arithmetic Geometry and Number Theory
Organizers: Ehud Hrushovski (Hebrew University), Francois Loeser (Université de Paris VI (Pierre et Marie Curie)), David Marker (University of Illinois), Thomas Scanlon (University of California, Berkeley), Sergei Starchenko (University of Notre Dame), LEAD Carol Wood (Wesleyan University)The program aims to further the flourishing interaction between model theory and other parts of mathematics, especially number theory and arithmetic geometry. At present the model theoretical tools in use arise primarily from geometric stability theory and o-minimality. Current areas of lively interaction include motivic integration, valued fields, diophantine geometry, and algebraic dynamics.
Updated on Jul 29, 2013 04:00 PM PDT -
Algebraic Topology
Organizers: Vigleik Angeltveit (Australian National University), Andrew Blumberg (University of Texas), Gunnar Carlsson (Stanford University), Teena Gerhardt (Michigan State University), LEAD Michael Hill (University of Virginia), Jacob Lurie (Harvard University)Algebraic topology touches almost every branch of modern mathematics. Algebra, geometry, topology, analysis, algebraic geometry, and number theory all influence and in turn are influenced by the methods of algebraic topology. The goals of this 2014 program at MSRI are:
Bring together algebraic topology researchers from all subdisciplines, reconnecting the pieces of the field
Identify the fundamental problems and goals in the field, uncovering the broader themes and connections
Connect young researchers with the field, broadening their perspective and introducing them to the myriad approaches and techniques.
Updated on Jul 29, 2013 04:00 PM PDT -
New Geometric Methods in Number Theory and Automorphic Forms
Organizers: Pierre Colmez (L'Institut de Mathématiques de Jussieu), Wee Gan (National University of Singapore), LEAD Michael Harris (L'Institut de Mathématiques de Jussieu), Elena Mantovan (California Institute of Technology), Ariane Mezard (Institut de Mathématiques de Jussieu), Akshay Venkatesh (Stanford University)The branches of number theory most directly related to the arithmetic of automorphic forms have seen much recent progress, with the resolution of many longstanding conjectures. These breakthroughs have largely been achieved by the discovery of new geometric techniques and insights. The goal of this program is to highlight new geometric structures and new questions of a geometric nature which seem most crucial for further development. In particular, the program will emphasize geometric questions arising in the study of Shimura varieties, the p-adic Langlands program, and periods of automorphic forms.
Updated on Jul 29, 2013 03:57 PM PDT -
Geometric Representation Theory
Organizers: LEAD David Ben-Zvi (University of Texas), Ngô Bảo Châu (University of Chicago), Thomas Haines (University of Maryland), Florian Herzig (University of Toronto), Kevin McGerty (University of Oxford), David Nadler (University of California, Berkeley), Catharina Stroppel (Hausdorff Research Institute for Mathematics, University of Bonn), Eva Viehmann (TU München)The fundamental aims of geometric representation theory are to uncover the deeper geometric and categorical structures underlying the familiar objects of representation theory and harmonic analysis, and to apply the resulting insights to the resolution of classical problems. One of the main sources of inspiration for the field is the Langlands philosophy, a vast nonabelian generalization of the Fourier transform of classical harmonic analysis, which serves as a visionary roadmap for the subject and places it at the heart of number theory. A primary goal of the proposed MSRI program is to explore the potential impact of geometric methods and ideas in the Langlands program by bringing together researchers working in the diverse areas impacted by the Langlands philosophy, with a particular emphasis on representation theory over local fields.
Another focus comes from theoretical physics, where new perspectives on the central objects of geometric representation theory arise in the study supersymmetric gauge theory, integrable systems and topological string theory. The impact of these ideas is only beginning to be absorbed and the program will provide a forum for their dissemination and development.
Updated on Aug 12, 2013 03:02 PM PDT -
Dynamics on Moduli Spaces of Geometric Structures
Organizers: Richard Canary (University of Michigan), William Goldman (University of Maryland), François Labourie (Université Paris-Sud (Orsay)), LEAD Howard Masur (University of Chicago), Anna Wienhard (Princeton University)The program will focus on the deformation theory of geometric structures on manifolds, and the resulting geometry and dynamics. This subject is formally a subfield of differential geometry and topology, with a heavy infusion of Lie theory. Its richness stems from close relations to dynamical systems, algebraic geometry, representation theory, Lie theory, partial differential equations, number theory, and complex analysis.
Updated on Jul 29, 2013 03:58 PM PDT -
Geometric and Arithmetic Aspects of Homogeneous Dynamics
Organizers: LEAD Dmitry Kleinbock (Brandeis University), Elon Lindenstrauss (Hebrew University), Hee Oh (Yale University), Jean-Francios Quint (Université de Paris XIII (Paris-Nord)), Alireza Salehi Golsefidy (University of California)Homogeneous dynamics is the study of asymptotic properties of the action of subgroups of Lie groups on their homogeneous spaces. This includes many classical examples of dynamical systems, such as linear Anosov diffeomorphisms of tori and geodesic flows on negatively curved manifolds. This topic is related to many branches of mathematics, in particular, number theory and geometry. Some directions to be explored in this program include: measure rigidity of multidimensional diagonal groups; effectivization, sparse equidistribution and sieving; random walks, stationary measures and stiff actions; ergodic theory of thin groups; measure classification in positive characteristic. It is a companion program to “Dynamics on moduli spaces of geometric structures”.
Updated on Jul 29, 2013 03:57 PM PDT -
Differential Geometry
Organizers: Tobias Colding (Massachusetts Institute of Technology), Simon Donaldson (Imperial College, London), John Lott (University of California, Berkeley), Natasa Sesum (Rutgers University), Gang Tian (Princeton University), LEAD Jeff Viaclovsky (University of Wisconsin)Differential geometry is a subject with both deep roots and recent advances. Many old problems in the field have recently been solved, such as the Poincaré and geometrization conjectures by Perelman, the quarter pinching conjecture by Brendle-Schoen, and the Willmore Conjecture by Marques-Neves. The solutions of these problems have introduced a wealth of new techniques into the field. This semester-long program will focus on the following main themes:
(1) Einstein metrics and generalizations,
(2) Complex differential geometry,
(3) Spaces with curvature bounded from below,
(4) Geometric flows,
and particularly on the deep connections between these areas.Updated on Aug 13, 2013 06:49 PM PDT -
Geometric Group Theory
Organizers: Ian Agol (University of California, Berkeley), Mladen Bestvina (University of Utah), Cornelia Drutu, Mark Feighn (Rutgers University), Michah Sageev (Technion---Israel Institute of Technology), LEAD Karen Vogtmann (Cornell University)The field of geometric group theory emerged from Gromov’s insight that even mathematical objects such as groups, which are defined completely in algebraic terms, can be profitably viewed as geometric objects and studied with geometric techniques Contemporary geometric group theory has broadened its scope considerably, but retains this basic philosophy of reformulating in geometric terms problems from diverse areas of mathematics and then solving them with a variety of tools. The growing list of areas where this general approach has been successful includes
low-dimensional topology, the theory of manifolds, algebraic topology, complex dynamics, combinatorial group theory, algebra, logic, the study of various classical families of groups, Riemannian geometry and representation theory.
The goals of this MSRI program are to bring together people from the various branches of the field in order to consolidate recent progress, chart new directions, and train the next generation of geometric group theorists.Updated on Jul 09, 2013 09:05 PM PDT
|
|
Upcoming Programs |
