Logo

Mathematical Sciences Research Institute

Home > Scientific > Workshops > Summer Graduate Schools > Upcoming

Upcoming Summer Graduate Schools

  1. Derived Categories

    Organizers: Nicolas Addington (University of Oregon), LEAD Alexander Polishchuk (University of Oregon)

    The goal of the school is to give an introduction to basic techniques for working with derived categories, with an emphasis on the derived categories of coherent sheaves on algebraic varieties. A particular goal will be to understand Orlov’s equivalence relating the derived category of a projective hypersurface with matrix factorizations of the corresponding polynomial.

    Updated on Jun 05, 2018 11:11 AM PDT
  2. H-principle

    Organizers: Emmy Murphy (Northwestern University), Takashi Tsuboi (University of Tokyo)
    072 04 small
    The image of a large sphere isometrically embedded into a small space through a C^1 embedding. (Attributions: E. Bartzos, V. Borrelli, R. Denis, F. Lazarus, D. Rohmer, B. Thibert)

    This two week summer school will introduce graduate students to the theory of h-principles.  After building up the theory from basic smooth topology, we will focus on more recent developments of the theory, particularly applications to symplectic and contact geometry, and foliation theory.

    Updated on Nov 02, 2017 10:19 AM PDT
  3. IAS/PCMI 2018: Harmonic Analysis

    Organizers: Carlos Kenig (University of Chicago), Fanghua Lin (New York University, Courant Institute), Svitlana Mayboroda (University of Minnesota, Twin Cities), Tatiana Toro (University of Washington)

    Harmonic analysis is a central field of mathematics with a number of applications to geometry, partial differential equations, probability, and number theory, as well as physics, biology, and engineering. The Graduate Summer School will feature mini-courses in geometric measure theory, homogenization, localization, free boundary problems, and partial differential equations as they apply to questions in or draw techniques from harmonic analysis. The goal of the program is to bring together students and researchers at all levels interested in these areas to share exciting recent developments in these subjects, stimulate further interactions, and inspire the new generation to pursue research in harmonic analysis and its applications.

    Updated on Nov 08, 2017 11:32 AM PST
  4. Representations of High Dimensional Data

    Organizers: Blake Hunter (Claremont McKenna College), Deanna Needell (University of California, Los Angeles)
    Image

    In today's world, data is exploding at a faster rate than computer architectures can handle. This summer school will introduce students to modern and innovative mathematical techniques that address this phenomenon. Hands-on topics will include data mining, compression, classification, topic modeling, large-scale stochastic optimization, and more.

    Updated on Apr 26, 2018 02:07 PM PDT
  5. From Symplectic Geometry to Chaos

    Organizers: Marcel Guardia (Universitat Politecnica de Catalunya), Vadim Kaloshin (University of Maryland), Leonid Polterovich (Tel Aviv University)

    The purpose of the summer school is to introduce graduate students to state-of-the-art methods and results in Hamiltonian systems and symplectic geometry. We focus on recent developments on the study of chaotic motion in Hamiltonian systems and its applications to models in Celestial Mechanics.

    Updated on May 18, 2018 03:05 PM PDT
  6. Random and arithmetic structures in topology

    Organizers: LEAD Alex Furman (University of Illinois at Chicago), Tsachik Gelander (Weizmann Institute of Science)
    Blurred 016

    The study of locally symmetric manifolds, such as closed hyperbolic manifolds, involves geometry of the corresponding symmetric space, topology of towers of its finite covers, and number-theoretic aspects that are relevant to possible constructions.
    The workshop will provide an introduction to these and closely related topics such as lattices, invariant random subgroups, and homological methods.

    Updated on Apr 20, 2018 03:02 PM PDT
  7. Séminaire de Mathématiques Supérieures 2019: Current trends in Symplectic Topology

    Organizers: Octav Cornea (Université de Montréal), Yakov Eliashberg (Stanford University), Michael Hutchings (University of California, Berkeley), Egor Shelukhin (Université de Montréal)

    Symplectic topology is a fast developing branch of geometry that has seen phenomenal growth in the last twenty years. This two weeks long summer school, organized in the setting of the Séminaire de Mathématiques Supérieures, intends to survey some of the key directions of development in the subject today thus covering: advances in homological mirror symmetry; applications to hamiltonian dynamics; persistent homology phenomena; implications of flexibility and the dichotomy flexibility/rigidity; legendrian contact homology; embedded contact homology and four-dimensional holomorphic techniques and others. With the collaboration of many of the top researchers in the field today, the school intends to serve as an introduction and guideline to students and young researchers who are interested in accessing this diverse subject. 

    Updated on Feb 21, 2018 11:27 AM PST
  8. Polynomial Method

    Organizers: Adam Sheffer (California Institute of Technology), LEAD Joshua Zahl (University of British Columbia)
    Twolines3d
    from distinct distances in the plane to line incidences in R^3

    In the past eight years, a number of longstanding open problems in combinatorics were resolved using a new set of algebraic techniques. In this summer school, we will discuss these new techniques as well as some exciting recent developments

    Updated on Apr 20, 2018 02:49 PM PDT
  9. Recent topics on well-posedness and stability of incompressible fluid and related topics

    Organizers: LEAD Yoshikazu Giga (University of Tokyo), Maria Schonbek (University of California, Santa Cruz), Tsuyoshi Yoneda (University of Tokyo)
    Image
    Fluid-flow stream function color-coded by vorticity in 3D flat torus calculated by K. Nakai (The University of Tokyo)

    The purpose of the workshop is to introduce graduate students to fundamental results on the Navier-Stokes and the Euler equations, with special emphasis on the solvability of its initial value problem with rough initial data as well as the large time behavior of a solution. These topics have long research history. However, recent studies clarify the problems from a broad point of view, not only from analysis but also from detailed studies of orbit of the flow.

    Updated on May 25, 2018 01:10 PM PDT
  10. Toric Varieties in Taipei

    Organizers: David Cox (University of Massachusetts, Amherst), Henry Schenck
    Firstchoice cropped
    This simplicial fan in 3-dimensional space

    Toric varieties are algebraic varieties defined by combinatorial data, and there is a wonderful interplay between algebra, combinatorics and geometry involved in their study. Many of the key concepts of abstract algebraic geometry (for example, constructing a variety by gluing affine pieces) have very concrete interpretations in the toric case, making toric varieties an ideal tool for introducing students to abstruse concepts.

    Updated on Apr 20, 2018 02:46 PM PDT